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In this paper, we outline the foundations of a theory of implicatures.
It divides into two parts. The first part contains the base model. It
introduces signalling games, optimal answer models, and a general
definition of implicatures in terms of natural information. The second
part contains a refinement in which we consider noisy communication
with efficient clarification requests. Throughout, we assume a fully
cooperative speaker who knows the information state of the hearer.
The purpose of this paper is not the study of examples. Our concern
is the framework for doing these studies.

1 Introduction

Communication poses a coordination problem. We represent this coordination
problem by signalling games (Lewis, 2002). The solutions to the coordina-
tion problem are strategy pairs which describe the speaker’s signalling and the
hearer’s interpretation behaviour. The behaviour is an objective natural regu-
larity, and the speaker’s and hearer’s strategies determine with which probabil-
ity they will choose their respective actions given their respective information
states. As natural regularity, the communicative process can be described as a
causal Bayesian network (Pearle, 2000). From this representation, we derive
the notion of natural information which is related to Grice’ (1957) concept of
natural meaning. We claim that this is a key concept for the understanding of
pragmatics.

Natural information is objective information, i.e. it exists independently
of the beliefs and intentions of language users. To justify this interpretation we
have to interpret the probabilities in signalling games as objective relative fre-
quencies. From this objective level we distinguish a subjective cognitive level at
which probabilities are interpreted as subjective probabilities. We describe the
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subjective level by optimal answer (OA) models. We justify this representation
by a discussion of the theory of mind as incorporated in iterated best response
models (Franke, 2009).

Accordingly, the first part of the paper divides into five sections. The first
section introduces signalling games, the second section the concept of natu-
ral information and the general definition of implicature, and the third section
the optimal answer models and their canonical solutions. The third section
also discusses the relation between OA and iterated best response models. The
fourth section applies the general definition of implicatures to OA models and
signalling games. In Section 2, we present a lemma which provides us with a
criterion for deciding whether or not a strategy pair is an objective Pareto Nash
equilibrium of a signalling game. This lemma, Lemma 2.3 will play an impor-
tant role in our discussion of aspects of bounded rationality, the theory of mind,
and the objective justification of canonical solutions to OA models. The last
section of the first part provides the proof of this lemma.

The second part of this paper starts out with a discussion of the idea
that ambiguities are resolved by choosing the more probable interpretation, and
that, as a consequence, the more probable interpretation of an ambiguous ut-
terance is communicated with certainty. This principle figures prominently in
Prashant Parikh’s (2001) approach to game theoretic pragmatics, which basi-
cally assumes that all pragmatic strengthening and weakening of interpretation
can be reduced to cases of disambiguation. We argue that the natural hearer’s
reaction to an ambiguity is to ask a clarification request. Hence in Section 8,
we consider signalling games for which the hearer’s action set contains efficient
clarification requests. Efficiency means that clarification requests have nominal
costs and lead to almost maximal payoffs. The availability of efficient clarifi-
cation requests changes the equilibria of signalling games if we allow for noisy
speaker strategies. This noise may have external causes, i.e. the kind of noise
might not be predictable from game theoretic parameters. Hence, we introduce
a very general model for representing noisy speaker strategies. This is done in
Section 9. In this section, we also show how the canonical solutions to OA mod-
els change, and how the notion of implicatures applies to models representing
noisy speaker strategies. Section 10, contains further characterisations of the
equilibrium properties of canonical solutions for noisy games and the proof of a
lemma analogous to Lemma 2.3. The final section contains some clarifications
concerning our concept of nominal costs.
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Part A: The Basic Model

2 Signalling Games

Grice (1989, p. 26) characterised conversation as a cooperative effort. This
means that the contributions of the interlocutors are not isolated sentences but
subordinated to a joint purpose. In this paper, we will always assume that
each assertion answers an implicit or explicit question by the hearer which in
turn is embedded in a decision problem. The decision problem is such that
the hearer has to make a choice between several actions. The hearer’s choice
of actions depends on his preferences regarding the actions’ outcomes and his
knowledge about the world. The speaker’s message helps the inquirer in mak-
ing his choice. The quality of a message depends on the action to which it
will lead. Hence, communication poses a coordination problem to speaker and
hearer. The speaker has to choose his contribution such that it induces the hearer
to choose an optimal action; and the hearer has to consider the speaker’s mes-
sage and use the communicated information for making the best choice. We
represent these coordination problems as signalling games (Lewis, 2002). The
signalling games are such that first nature chooses a world v with probabil-
ity P(v); then again nature chooses a type θ , i.e. an information state, for the
speaker S with conditional probability p(θ |v); then the speaker chooses a signal
F with conditional probability S(F |θ), and finally the hearer chooses an act a
with conditional probability H(a|F). A branch of this game is depicted in the
following figure:

s s s s s- - - -
v S H u(v,θ ,F,a)P(v) p(θ |v) S(F |θ) H(a|F)

We formally define the signalling games as follows:

Definition 2.1 (Signalling Game) A tuple 〈Ω,Θ,P, p,F ,A ,u〉 is a signalling
game if:

1. Ω and Θ are non–empty finite sets;

2. P( . ) is a probability distribution over Ω;

3. p( . |v) is a probability distribution over Θ for every v ∈Ω;

4. F and A are respectively the speaker’s and hearer’s action sets;

5. u : Ω×Θ×F ×A → R is a shared utility function.

We assume that u(v,θ ,F,a) can be decomposed into a difference u(v,a)− c(F)
for some real valued function u(v,a) and a positive value c(F).
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We assume that the general game structure is common knowledge. The speaker,
in addition, knows θ when choosing signal F , and the hearer knows F when
choosing action a. This means that the agents’ strategies are functions of the
following form:

• For each type θ ∈Θ, the speaker’s strategy S( . |θ) is a probability distribu-
tion over F ;

• For each signal F ∈F , the hearer’s strategy H( . |F) is a probability distri-
bution over A .

In principle, the probabilities could be interpreted as objective frequencies
or as subjective probabilities. For reasons which will become clear in the next
section, we interpret all the probabilities related to signalling games as objective
frequencies.

Next, we introduce the notion of a Nash equilibrium. The speaker’s ex-
pected utility E (S|H) of strategy S given a hearer strategy H is defined as:

E (S|H) = ∑
v∈Ω

P(v) ∑
θ∈Θ

p(θ |v) ∑
A∈F

S(F |θ) ∑
a∈A

H(a|F)u(v,θ ,F,a). (2.1)

As the basic signalling games defined in Def. 2.1 are games of pure coordi-
nation, i.e. games in which the utility functions of both agents are identical, it
follows that E (S|H) = E (H|S). With these notions at hand, we can define:

Definition 2.2 (Nash Equilibrium) A strategy pair (S,H) is a Nash equilib-
rium of a signalling game 〈Ω,Θ,P, p,F ,A ,u〉 iff:

1. For all speaker strategies S′: E (S′|H)≤ E (S|H),

2. For all hearer strategies H ′: E (H ′|S)≤ E (H|S),

The equilibrium is strict if we can replace ≤ by <. It is weak if it is not strict.

For a game of pure coordination, a Nash equilibrium is a Pareto Nash equilib-
rium iff for all other Nash equilibria (S′,H ′): E (S′|H ′)≤ E (S|H). In this case,
we also say that (S,H) (weakly) Pareto dominates (S′,H ′).

The textbook equilibrium concept for signalling games is the concept of
a Bayesian perfect equilibrium. Bayesian perfection takes the player’s informa-
tion set into account. The player’s strategy must be optimal given the informa-
tion available to him at the time when he actually makes the decision. For the
hearer, this is after receiving an answer F . Apart from the possible semantic
meaning of the answer, the hearer is gaining additional information from the
fact that the answer was given. Hence, the probability distribution that enters in
the hearer’s decision making is his prior distribution updated with the informa-
tion gained by learning that a certain answer has been given. But, for the basic
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signalling games which we consider, Baysian perfect equilibria and Nash equi-
libria in the sense of Definition 2.2 coincide. Although their definition is more
complicated, it can be easier to do calculations for Bayesian perfect equilibria.
We will do this in Section 6.

In general, it is often convenient or necessary to formulate constraints and
do calculations with conditional probabilities, and not with P and p directly.
The probability with which nature assigns type θ to speaker S in world v equals
P(v) p(θ |v). Hence, the speaker’s probability µS(v|θ) for a world v after receiv-
ing type θ is a conditional probability defined as the probability to receive θ

in v divided by the overall probability of receiving θ ; see (2.2). For the hearer,
we find an analogous probability distribution. He acts after receiving a signal
F . Hence, the hearer’s probability µH(v|F) of a world v after receiving F is the
probability of receiving F in v divided by the overall probability of receiving
signal F (2.2). The explicit definitions are as follows:

µS(v|θ) =
P(v) p(θ |v)

∑w P(w) p(θ |w)
, µH(v|F) =

P(v) ∑θ p(θ |v)S(F |θ)
∑w P(w) ∑θ p(θ |w)S(F |θ)

. (2.2)

Here and in the following, we assume that the denominators are non–zero. For
µS this means that there exists a w such that P(w) p(θ |w) > 0, and for µH that
there are w and θ for which P(w) p(θ |w)S(F |θ) > 0.

In later sections, we will often make use of the following abbreviations:

µΘ(θ) := ∑
w

P(w) p(θ |w), and µF(F) := ∑
w

P(w)∑
θ

p(θ |w)S(F |θ). (2.3)

µF(F) is the probability for the speaker producing F , and µΘ(θ) is the prob-
ability for the speaker’s type to be θ . As it is clear from the argument which
measure is meant, we will write µ(F) instead of µF(F), and µ(θ) instead of
µΘ(θ).

Given type θ , the (speaker’s) expected utility of an action a is defined by:

ES(a|θ) = ∑
v

µS(v|θ)u(v,a) (2.4)

Similarly, given answer F , the (hearer’s) expected utility of an action a is defined
by:

EH(a|F) := ∑
v

µH(v|F)u(v,θ ,F,a). (2.5)

The speaker’s expected utility of a strategy S given his type θ is then:

ES(S|θ) = ∑
A

S(F |θ)∑
a

H(a|F)ES(a|θ) (2.6)

reinhard
Typewritten Text
157



And the hearer’s expected utility of a strategy H given his information state after
receiving signal F is then:

EH(H|F) := ∑
a

H(a|F)EH(a|F) (2.7)

We are now interested in a simple criterion for deciding whether a strategy
pair is a Pareto Nash equilibrium. The criterion will only depend on S, H and
the following set B(θ) which is the set of all actions with maximal expected
utility:

B(θ) = {a ∈A | ∀b ∈A ES(b|θ)≤ ES(a|θ)}. (2.8)

Throughout the paper, we will make extensive use of the following fun-
damental lemma:

Lemma 2.3 Let 〈Ω,Θ,P, p,F ,A ,u〉 be a signalling game. Let Θ∗ be the set of
all types θ for which ∃v P(v) p(θ |v) > 0. Let (S,H) be a strategy pair which
satisfies the following condition:

∀F ∈F∀θ ∈Θ
∗ (S(F |θ) > 0⇒ H(B(θ)|F) = 1). (2.9)

Then (S,H) is a Pareto Nash equilibrium. Furthermore, if H ′ is such that

∃F ∈F∃θ ∈Θ
∗ ∃a 6∈B(θ) (S(F |θ) > 0∧H ′(a|F) > 0), (2.10)

Then (S,H ′) is not a Nash equilibrium, in particular, it is E (H ′|S) < E (H|S).

We will prove this lemma in Section 6

3 Natural Information

In (1957), Grice introduced the distinction between natural meaning and com-
municated meaning. Natural meaning is the information which can be carried
by an event or object independently of the beliefs and intentions of any person
who may use this event or object for the purposes of communication. Grice
used the following example for illustrating the concept of natural meaning:

(1) a) Those spots mean measles.
b) Those spots didn’t mean anything to me, but to the doctor they meant

measles.

In both sentences, the word meaning refers to natural meaning. The spots carry
the information that the patient is infected with measles independently of any
person using the spots for communicating that he is infected with measles, e.g.
by pointing at the patient and saying: ‘Look what he has!.’ The spots carry their
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information due to a causal relation that exists between the infection and red
spots on the skin. This causal relation is a natural regularity which is the basis
for the inference from red spots to measles.

Causal relations can be represented by causal networks. The diagram in
Figure 1 from (Pearle, 2000, p. 15) may serve as an illustration. X0, . . . ,X4
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Fig. 1: A causal network.

are random variables which represent the state of the season and of a sprinkler,
whether it rains, and whether a certain place is wet or slippery. The random
variable for the season can take four different values, whereas the random vari-
ables for the sprinkler, the rain, and the wetness and slipperiness are only tak-
ing the Boolean values true, or false. In causal Bayesian networks, the causal
dependencies are represented by conditional probabilities which hold between
random variables. Given, e.g., that the slipperiness of a road is determined by
its wetness, which in turn is determined by the fact whether a sprinkler is on,
or whether it is raining, and that for example the state of the sprinkler is deter-
mined by the season, then we could say that: ‘That the street is slippery means
that the sprinkler was on or that it rained;’ or ‘That the sprinkler is on means
that it is summer’. In both cases, the word means refers to natural meaning.

We now turn to the communication process. As we have seen in the last
section, the context of communication can be described by the state of the world
v, the speaker’s information state θ , and a fixed information state of the hearer.
Let Ω be the set of all possible worlds, and Θ of all possible speaker states.
Again as in the last section, we identify the communicative behaviour of speaker
and hearer with strategies S and H, i.e. with functions S which map the speaker’s
possible information states θ to probability distributions over a set F of possi-
ble utterances, and functions H which map utterance F to probability distribu-
tions over a set of hearer actions A . Hence, S only depends on the speaker’s
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information state θ , and the hearer’s strategy on the signal F which he receives
from the speaker. We write P(v) for the probability of a world v, and p(θ |v) for
the probability of the speaker’s information state θ given v. If P, p, S, and H are
given, then we can think of the communicative process as a Markovian process,
i.e. a process in which the probability of each successor state only depends on
the predecessor states. A branch in this process is shown in the following graph:

s s s s- - -
v S H a

P(v) p(θ |v) S(A|θ) H(a|A)

In generally, we can think of the Ω, Θ, F , and A as random variables in a
causal Bayesian network in which the conditional probabilities P, p, S, and H
define causal dependencies between these variables. Clearly, this identification
assumes that all probabilities are objective frequencies. This is all we need to
introduce a meaningful definition of natural information.

��
��
��
��
��
��
��
��

Ω Θ F A- - -

WORLD SPEAKER SIGNAL ACTION

Fig. 2: The causal network associated to a signalling game.

For the following definitions, we abstract away from all particularities
of linguistic communication. In order to make our definition not too far re-
moved from our applications, we consider only graphs which represent a linear
sequence of causal dependencies. But our definitions will immediately gener-
alise to any causal Bayesian network which is represented by a directed acyclic
graph. A linear graph of length n+1 is given by a pair (Xi, pi)i=0,...,n for which:

1. (Xi)i=0...,n is a family of non-empty sets,

2. p0( . ) a probability distribution over X0,

3. for i > 0 and xi−1 ∈Xi−1, pi( . |xi−1) is a conditional probability distribution
over Xi.

We call a pair (Xi, pi)i=0...,n a linear causal network.
From the pi’s we can define the joint distributions µk on the product space

X k := ∏
k
i=0 Xi, k ≤ n, by

µ
k(x0, . . . ,xk) :=

k

∏
i=0

pi(xi|xi−1). (3.11)

We write µ for µn. As for each sequence x = 〈x0, . . . ,xn〉 ∈ X n the prob-
ability of xi+1 does only depend on its predecessor xi, the processes defined
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by (Xi, pi)i=1,...,n has the general properties of a Markovian processes (Pearle,
2000, p. 14).

We are now going to introduce the marginal probabilities. Let πi de-
note the projection of X k onto Xi; i.e. for i ≤ k and x = 〈x0, . . . ,xk〉 ∈X k let
πi(x) := xi, and for X ⊆X k let πi(X) = {πi(x) |x ∈ X}. For X ⊆Xi we set

π
−1
i [X ] := {x ∈X n |πi(x) ∈ X}. (3.12)

We define the marginal probabilities µi on Xi by:

µi(X) = µ(π−1
i [X ]), for X ⊆Xi. (3.13)

For i≤ k≤ n, X ⊆Xi, it holds µk(π−1
i [X ]) = µn(π−1

i [X ]). Hence, the definition
of the marginal probabilities µi in (3.13) does not depend on the fact that it is
defined relative to µn. By induction it can be shown that µi(X) equals

∑
x0∈X0

p0(x0) ∑
x1∈X1

p1(x1|x0) . . . ∑
xi−1∈Xi−1

pi−1(xi−1|xi−2) ∑
xi∈X

pi(xi|xi−1) (3.14)

Finally, we define conditional marginal probabilities µi| j as follows: let X ⊆
Xi, and Y ⊆X j with µ j(Y ) > 0, then the conditional marginal probability of X
given Y is defined by:

µi| j(X |Y ) = µ(π−1
i [X ]|π−1

j [Y ]). (3.15)

With these preparations, we can introduce our general definition of natural
meaning:

Definition 3.1 Let (Xi, pi)i=0,...,n be a linear causal network. Then, for X ⊆Xi
and Y ⊆X j with µ j(Y ) > 0, we set

(Xi, pi) |= Y V X :⇐⇒ µi| j(X |Y ) = 1. (3.16)

We say that event Y naturally means that X.

If all Xi are countable, then there is a smallest set X which is naturally implied
by the occurrence of an event Y . We can identify this set with the the natural
meaning of Y .

If X and Y are singletons, i.e. if X = {x} and Y = {y}, then we write
µi| j(x|y) instead of µi| j({x}|{y}). Furthermore, if i and j are clear from context,
e.g. because x can only be an element of Xi, or X a subset of Xi, then we write
µ instead of µi, or µi| j.

In (3.16), nothing depends on the fact that (Xi, pi)i=0,...,n is a linear causal
network. The pis could equally well depend on any set of random variables X j
as long as j < i. But the condition of linearity plays an important role if we
apply the concept of natural meaning to signalling games. Here, the fact that
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signalling games in the sense of Definition 2.1 define linear causal networks
entails that the common natural information of speaker and hearer is identical
to the hearer’s information state! We show this in Lemma 3.4 at the end of this
section.

We introduce the relevant notion of common natural information in full
generality. Let (Xi, pi)i=0,...,n be given. For x ∈ X n and I ⊆ {0, . . . ,n} let
x�I be the restriction of x to I, i.e. it is the function with domain I and values
(x�I)(i) = πi(x). We set:

[x�I] := {y ∈X n |µ(y) > 0∧x�I = y�I}. (3.17)

For x ∈X n we define the common natural information by the following con-
struction:

EI,J(x) = [x�I]∪ [x�J],
E0

I,J(x) = {x},
En+1

I,J (x) =
⋃
{[y�I]∪ [y�J] |y ∈ En

I,J(x)},

CNII,J(x) =
⋃
n

En
I,J(x). (3.18)

The index sets I and J represent the information states of two agents. Hence,
CNII,J(x) corresponds to the standard definitions of common knowledge. Impli-
cated information is generally considered to be part of the common knowledge.
As we explicate implicatures as common natural information, we have to spell
out what it means that an event Y carries the information that an event X is
common natural information. Hence, let Y ⊆X j, X ⊆Xi, and x ∈X n. We
obviously have to conditionalise the conditional marginal probability in (3.16)
to CNII,J(x); i.e. we have to replace the condition µ(π−1

i [X ]|π−1
j [Y ]) = 1 by

the condition µ(π−1
i [X ]|π−1

j [Y ]∩CNII,J(x)) = 1. First, if this definition should
capture the common natural information carried by event Y for two agents rep-
resented by the index sets I and J, then Y should be known to both of them,
hence, it should hold that j ∈ I ∩ J. Second, from this it follows that the
condition is reasonable only if π j(x) ∈ Y . These two restrictions entail that
µ(π−1

i [X ]|π−1
j [Y ]∩CNII,J(x)) = µ(π−1

i [X ]|CNII,J(x)). Hence, the definition
of common natural information for a branch x cannot depend on the set Y of
observable values. This straightforwardly leads to the following definition of
an event X being common natural information for a branch x and agents repre-
sented by index sets I,J:

Definition 3.2 Let (Xi, pi)i=0,...,n be a linear causal network. Then, for X ⊆Xi,
x ∈X n with µ(x) > 0, we set for I,J ⊆ {0, . . . ,n}, I,J 6= /0:

(Xi, pi,x) |= CI,J X :⇐⇒ µ(π−1
i [X ]|CNII,J(x)) = 1. (3.19)
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We apply these notions to signalling games as follows: For a given sig-
nalling game, we identify X0 with Ω, X1 with Θ, X2 with F , and X3 with
A ; accordingly, p0 = P, p1 = p, p2 = S, and p3 = H. The information states
of the interlocutors are I = {1,2} for the speaker and J = {2} for the hearer.
A branch in the product space X 3 is a sequence b = 〈v,θ ,F,a〉. We simplify
notation and write b(Ω), b(Θ), b(F ), and b(A ) instead of π0(b), π1(b), etc.

In signalling games it holds that the hearer’s information state J is a subset
of the speaker’s information state I. This leads to a significant simplification of
(3.19). First, we note that it obviously holds that:

J ⊆ I⇒ [x�I]⊆ [x�J]. (3.20)

Furthermore, by induction it can be shown that:

i ∈ I∩ J⇒∀n > 0∀y ∈ En
I,J(x)πi(y) = πi(x). (3.21)

From these two facts, it follows by induction that J ⊆ I implies that ∀n >
0En

I,J(x) = [x�J], and hence that:

J ⊆ I⇒ CNII,J(x) = [x�J]. (3.22)

Identifying implicatures of an utterance F with the common natural in-
formation carried by this event, we arrive at:

Definition 3.3 (Implicature) Let (S,H) be a strategy pair for a signalling game
G = 〈Ω,Θ,P, p,F ,A ,u〉. Let (Xi, pi)i=0,...,n be the linear causal network de-
fined by identifying X0 with Ω, X1 with Θ, X2 with F , and X3 with A ;
accordingly, p0 = P, p1 = p, p2 = S, and p3 = H. Let X ⊆Xi, I = {1,2} and
J = {2}. Let µ be the probability distribution on the product space X 3 de-
fined in (3.11), and let b be a branch in X 3 with µ(b) > 0. Then we set for
b(F ) = F:

〈G ,S,H,b〉 |= F +> X :⇐⇒ (Xi, pi,b) |= CI,J X . (3.23)

We then say that in b the utterance of F implicates that X. We simply say that
the utterance of F implicates that X, 〈G ,S,H〉 |= Y +> X, if 〈G ,S,H,b〉 |=
F +> X for all b for which b(F ) = F and µ(b) > 0. Then, for Y ⊆F , we
generalise:

〈G ,S,H〉 |= Y +> X :⇐⇒ ∀F ∈ Y 〈G ,S,H〉 |= F +> X . (3.24)

According to the generalisation in (3.24), a set Y of signals implicates X if every
form F ∈ Y implicates X . By (3.22), it immediately follows that:

Lemma 3.4 Let G = 〈Ω,Θ,P, p,F ,A ,u〉 be a signalling game, and (S,H) a
strategy pair for G . Let µi|F := µi|2 be the conditional marginal probability dis-
tribution defined in (3.15) for the linear causal network (Xi, pi)i=0,...,3 defined
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by 〈G ,S,H〉. Then, for X ⊆Xi, Y ⊆F , it holds:

〈G ,S,H〉 |= Y +> X ⇐⇒ µi|F (X |Y ) = 1 (3.25)

In the following, we will often identify a solved signalling game 〈G ,S,H〉 with
its associated linear causal network (Xi, pi)i=0,...,3 and write e.g. 〈G ,S,H〉 |=
Y V X iff (Xi, pi)i=0,...,3 |= Y V X in the sense of Def. 3.1. Using this conven-
tion, we can rewrite (3.25) equivalently as

〈G ,S,H〉 |= Y +> X ⇐⇒ 〈G ,S,H〉 |= Y V X , (3.26)

i.e. Y implicates X iff Y naturally means X .
We further explore the potential of Definition 3.3 in Section 5.

4 The Solution Concept

4.1 Preliminary Remarks

With the terminology of Section 3, the conditions of Lemma 2.3 can now be
reformulated as follows: If 〈G ,S,H〉 is such that an utterance of F naturally
means that the hearer chooses a speaker optimal act, then (S,H) is a Pareto
Nash equilibrium; if 〈G ,S,H〉 is such that an utterance of F does not naturally
mean that the hearer chooses a speaker optimal act, then (S,H) is not a Pareto
Nash equilibrium. We mentioned before that we interpret the probabilities in
signalling games as objective probabilities. Hence, Lemma 2.3 provides us
with a criterion for deciding whether a strategy pair is an objective Pareto Nash
equilibrium.

In principle, there are two interpretations of probabilities which are of in-
terest to us: the interpretation as objective frequencies, and the interpretation as
subjective probabilities in the sense of (Savage, 1972). We will use both inter-
pretations depending on which aspect of communication we are modelling. We
interpret probabilities objectively if we want to explain the objective success
of communication seen as a real world phenomenon; we interpret them sub-
jectively if we model the cognitive level. Objective probabilities are just the fa-
miliar relative frequencies. Subjective probabilities are mathematical constructs
which offer concise representations of the agent’s propensities for choosing ac-
tions; i.e. assigning subjective probability PX and utility function uX to agent
X means that X’s preferences over actions a after learning F are indistinguish-
able from an agent’s preferences who chooses between actions according to
the expected utilities EUX(a|F). As subjective probabilities are mathematical
constructs, assigning them to agents does not mean that these agents actually
represent these probabilities, or reason with them. Likewise, subjective proba-
bilities do, in general, not have to correspond to observable frequencies. Objec-
tive frequencies may be completely unknown to our interlocutors; it may even
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be that they don’t even possess a notion of probability. As the probabilities P
and p defined in signalling games represent the probabilities with which nature
is choosing worlds and speaker’s types, they have to be interpreted as objective
frequencies, hence they might not be known to the interlocutors. In this sec-
tion, we provide a model of the communicative situation which only represents
the interlocutors’ subjective expectations about the state of the world but not
the objective frequencies with which nature chooses the world or the speaker’s
type.

The task is to describe the communicative situation in terms of its cogni-
tively relevant parameters, and to provide a method for finding solutions (S,H)
to the coordination problem posed by the communicative situation. As our mod-
els are intended as models of online communication, it is prima facia reasonable
to look for a method which is as simple as possible.

In most game theoretic models, equilibrium concepts are describing the
stable patterns of behaviour which can emerge from the interaction of rational
agents in certain classes of games. As different populations playing these games
may adopt different behaviours, the task in empirical applications is to find the
set of all possible strategy profiles which satisfy a given equilibrium concept
and to show that the behavioural patterns found in the different populations cor-
respond to one or the other strategy profile in this set. In this paper, we follow
a different strategy. We assume that there is a signalling strategy established in
the population which defines the semantic meaning of signals (Lewis, 2002);
i.e. we assume that the speaker’s signals have a predefined meaning which re-
stricts their use. The pure semantic meaning of signals also defines a hearer
strategy for choosing between available actions after learning the signal’s se-
mantic meaning. Starting out from this situation, we are interested in the Nash
equilibrium (S,H) which is closest to the given semantic convention. We think
of the distance in terms of the number of steps of reasoning about each other
which are involved in reaching the equilibrium. This can be made more precise
in the framework of iterated best response (IBR) models (Jäger and Ebert, 2009;
Franke, 2009).1 IBR models explicate the reasoning about each other by an it-
erated process. In each step of this process, one of the two interlocutors chooses
a best response strategy to the strategy which he assumes the other interlocutor
has chosen in the previous step. There are two possible strategies from which
the IBR process can start: the process can either start with a speaker strategy or
with a hearer strategy. Accordingly, the model consists of two separate lines of
reasoning. These two lines are shown in Figure 3.

In the IBR models worked out by (Jäger and Ebert, 2009; Franke, 2009),
the Si and Ri are in fact sets of strategies. In (Franke, 2009), S0 is the set of

1The following sketch of the IBR model is a simplified version of (Franke, 2009). For more
details, motivation, and differences between the models, we refer to the original papers.
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S0 R0

R1 S1

S2 R2

sends any
true message

best response
to S0

best response
to R1

interprets
message
literally

best response
to R0

best response
to S1

... ...
... ...

Fig. 3: Schema of the IBR-sequence (Franke, 2009, p. 57).

all speaker strategies for which the speaker arbitrarily chooses a signal which
he believes to be true. Hence, the S0–speakers do not take the hearer’s strategy
into account. The hearer chooses an action after receiving the speaker’s signal.
Receiving it, he learns the semantic content of it. R0 is the set of all hearer
strategies for which the hearer only takes the semantic meaning of signals into
account. Hence, R0–hearers do not reason about the speaker. This means that on
the 0–level it suffices to know the shared utilities and the speaker’s and hearer’s
(subjective) probabilities about the state of affairs for defining S0 and R0. In
step n + 1 of the IBR process, each interlocutor I assumes that the other inter-
locutor J adopts a certain strategy from J’s strategy set defined in the nth step.
Together with I’s expectations about the state of affairs, this defines I’s new set
of best response strategies. This means, e.g., that, in the first step from S0 to R1,
the hearer assumes that the speaker adopted some S0 strategy, which arbitrarily
chooses a sentence which the speaker believes to be true. The hearer, after re-
ceiving a signal F , then chooses an act which has the highest expected utility
given the fact that the speaker sent F . R1 is then the set of all hearer strategies
which, in this way, can result as a best response to some S ∈ S0. Similarly, in
the first iteration step from R0 to S1, the speaker assumes that the hearer follows
some strategy in R0. The speaker, as a response, chooses signals which lead
the hearer to choose such actions which will have the highest expected utility
as seen from the speaker’s perspective. This defines the set S1. This process
can be iterated. IBR models then look for pairs of strategy sets (S∗,H∗) which
eventually become stable.2

How many iteration steps does it at least take to reach a stable state? We
can consider the two lines of the IBR model separately as strategy sets occurring

2Stability is defined by a looping condition for the strategy sets S∗ and R∗. For details, see
(Franke, 2009, p. 58).
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in one line have no influence on the strategy sets in the other line. Hence,
let us consider the line starting with the speaker strategies in S0. The hearers
set of best responses R1 will in general be different from R0 as the fact that
a signal was sent may carry information in addition to the semantic meaning
of the signal. As the strategies in S0 randomly produced true signals, S2, the
speaker’s best responses to R1, will in general be different to S0. Hence, a
stable state cannot be reached before S2 is reached. The earliest stage at which
the hearer can see that he has reached a stable state is therefore the stage in
which he calculates R3; and the earliest stage at which the speaker can see that
he has reached a stable state is, accordingly, the stage in which he calculates
S4. Hence, for the line starting with S0, for reaching a stable state, the hearer
must at least consider the speaker’s best response to his best response to the
speaker’s random strategy; and the speaker has at least to consider the hearer’s
best responses to the speaker’s best responses to the hearer’s best responses
to the speaker’s random strategies in S0. Let us now turn to the line of the IBR
model starting with R0. The earliest stage at which the hearer can see that he has
reached a stable state is the stage in which he calculates R2; and the earliest stage
at which the speaker can see that he has reached a stable state is, accordingly,
the stage in which he calculates S3. Hence, for the line starting with R0, the
hearer must at least consider the speaker’s best response to his basic strategies
in R0, and the speaker has at least to consider the hearer’s best responses to the
speaker’s best responses to the hearer’s basic strategies. As R0 is, in general, not
identical to R1, the speaker’s set S1 of best responses to R0 will, in general, also
be different from S2. Hence, if one line stops at an early stage, it is no guarantee
that the other line does also stop early. If we take the IBR model serious as
a cognitive model, then these reasoning steps must be a cognitive reality. In
this section, we show that the coordination problem posed by communication
can be solved with fewer steps of reasoning about each other than predicted by
the IBR model. More precisely, we show that backward induction provides a
solution which guarantees that speaker and hearer have reached a stable strategy
pair without having to calculate whether they have reached a stable state.

The IBR model shows that, in order to find out whether a strategy is stable
by reasoning about each other, the hearer must take into account the speaker’s
best response to a hearer strategy at least once. Hence, the shortest possible path
to a stable strategy is the R0–S1–R2–S3–path. If the method for finding a sta-
ble solution should be simpler or shorter than the method provided by the IBR
model, then we have to find a method which avoids some steps of reasoning
about each other in this sequence. In this respect, the simplest method is back-
ward induction. When applying backward induction to a signalling game G ,
the hearer does never consider the speaker’s strategy, and the speaker considers
the hearer’s strategy only once. This is the cognitively least demanding method
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for finding solutions. We will show in Section 4.3 that the resulting strategy
pair (S,H) guarantees that for any possible utterance the signal naturally means
that the hearer chooses a speaker optimal act. From Lemma 2.3 it follows that
(S,H) is a Pareto Nash equilibrium; hence it is a stable strategy pair. There is no
need for further steps of reasoning about each other. The following method for
finding a solution to the coordination problem described by signalling games
was introduced in (Benz, 2006). We call it the Optimal–Answer (OA) model.

4.2 The Optimal–Answer Model

In this section, the general features of the communicative situation are the same
as that considered in the context of signalling games. We again assume that the
conversation is subordinated to a joint purpose which is defined by a decision
problem of the hearer. This decision problem may be revealed by an implicit or
explicit question by the hearer. Hence, we can call the speaker’s message an an-
swer. The OA model tells us which answer a rational language user will choose
given the hearer’s decision problem and his knowledge about the world. We call
the basic models which represent the utterance situation as support problems.
They consist of the hearer’s decision problem and the speaker’s expectations
about the world. These expectations are represented by subjective probabilities.
In (Benz, 2006, 2007), it was shown that, in general, it is not possible to define
a reliable relevance measure such that the speaker may simply maximise the
relevance of his answers for optimally supporting the hearer. When solving a
support problem the speaker has to take the hearer’s response to his choice of
signal into account. Hence, in view of our previous discussion of IBR mod-
els, this shows that there is no reliable method of solving a support problem
which involves fewer steps of reasoning about each other than backward induc-
tion. Support problems incorporate Grice’ Cooperative Principle, his maxim
of Quality, and a method for finding optimal strategies which replaces Grice’
maxims of Quantity and Relevance. For now, we ignore the maxim of Manner.

A decision problem consists of a set Ω of the possible states of the world,
the decision maker’s expectations about the world, a set of actions A he can
choose from, and his preferences regarding their outcomes. We always assume
that Ω is finite. We represent an agent’s expectations about the world by a
probability distribution over Ω, i.e. a real valued function P : Ω→ R with the
following properties: (1) P(v) ≥ 0 for all v ∈ Ω and (2) ∑v∈Ω P(v) = 1. For
sets F ⊆Ω it is P(F) = ∑v∈F P(v). The pair (Ω,P) is called a finite probability
space. An agent’s preferences regarding outcomes of actions are represented by
a real valued function over world–action pairs. We collect these elements in the
following structure:

Definition 4.1 A decision problem is a triple 〈(Ω,P),A ,u〉 such that (Ω,P)
is a finite probability space, A a finite, non–empty set and u : Ω×A → R
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a function. A is called the action set, and its elements actions; u is called a
payoff or utility function.

In the following, a decision problem 〈(Ω,P),A ,u〉 represents the hearer’s
situation before receiving information from an answering expert. We will as-
sume that this problem is common knowledge. How to find a solution to a deci-
sion problem? It is standard to assume that rational agents try to maximise their
expected utilities. In Section 2, we used the symbol E to denote the expected
utility. As in the present section probabilities are assumed to be subjective prob-
abilities, we use different notation in order to distinguish subjective expected
utilities from expected utilities defined from objective frequencies. Hence, we
write for the (subjective) expected utility of action a ∈ A in decision problem
〈(Ω,P),A ,u〉:

EU(a) = ∑
v∈Ω

P(v)×u(v,a). (4.27)

The expected utility of actions may change if the decision maker learns new
information. To determine this change of expected utility, we first have to know
how learning new information affects the hearer’s beliefs. In probability theory
the result of learning a proposition F is modelled by conditional probabilities.
Let H be any proposition and F the newly learned proposition. Then, the prob-
ability of H given F , written P(H|F), is defined as

P(H|F) := P(H ∩A)/P(F) for P(F) 6= 0. (4.28)

In terms of this conditional probability function, the expected utility after learn-
ing F is defined as

EU(a|F) = ∑
v∈Ω

P(v|F)×u(v,a). (4.29)

H will choose the action which maximises his expected utilities after learning
F , i.e. he will only choose actions a for which EU(a|F) is maximal. We as-
sume that H’s decision does not depend on what he believes that the answering
speaker believes. We denote the set of actions with maximal expected utility by
B(F), i.e.

B(F) := {a ∈A | ∀b ∈A EUH(b|F)≤ EUH(a|F)}. (4.30)

The decision problem represents the hearer’s situation. In order to get a
model of the questioning and answering situation, we have to add a representa-
tion of the answering speaker’s information state. We identify it with a (subjec-
tive) probability distribution PS that represents his expectations about the world.
We make a number of assumptions in order to match the definition of support
problems to our previous definition of signalling games. First, we assume that

reinhard
Typewritten Text
169



the hearer’s expectations are common knowledge. Second, we assume that there
exists a common prior from which both the speaker’s and the hearer’s informa-
tion state can be derived by a Bayesian update. This entails that the speakers
and the hearer’s expectations cannot contradict each other. Third, we assume
that the speaker does not directly choose propositions but linguistic forms or
signals which have a predefined semantics. Furthermore, we assume that the
forms F ∈F come with positive costs. This leads to the following definition of
interpreted support problems:

Definition 4.2 A tuple σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉 is an interpreted support
problem if:

1. (Ω,PS) is a finite probability space and 〈(Ω,PH),A ,u〉 a decision problem;

2. there exists a probability distribution P on Ω, and sets KS ⊆ KH ⊆ Ω for
which PS(X) = P(X |KS) and PH(X) = P(X |KH);

3. J .K : F →P(Ω) is an interpretation function for the elements F ∈F . We
assume that

∀X ⊆Ω∃F ∈F JFK = X ; (4.31)

4. u : Ω×A → R is a utility measure and c a cost function that maps forms
F ∈F to positive real number.

The second condition says that PS and PH are derived from a common prior P by
a Bayesian update. It entails:

∀X ⊆Ω PS(X) = PH(X |KS). (4.32)

This condition allows us to identify the common ground in conversation with
the addressee’s expectations about the domain Ω, i.e. with PH. The speaker
knows the addressee’s information state and is at least as well informed about
Ω. Hence, the assumption is a probabilistic equivalent to the assumption about
common ground that implicitly underlies dynamic semantics (Groenendijk and
Stockhof, 1991). Furthermore, condition (4.32) implies that the speaker’s be-
liefs cannot contradict the hearer’s expectations, i.e. for X ⊆ Ω: PS(X) = 1⇒
PH(X) > 0.

In order to simplify notation, we will often write F instead of JFK. Hence,
F may denote a proposition or a linguistic form, depending on context.

Our next goal is to introduce a principle for solving support problems, i.e.
for finding the speaker’s and hearer’s strategies which lead to optimal outcomes.
The speaker S’s task is to provide information that is optimally suited to support
H in his decision problem. Hence, we find two successive decision problems,
in which the first problem is S’s problem to choose an answers. The utility of
the answer depends on how it influences H’s final choice:
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hearer H speaker S H decides evaluation
asks answers for action
↓ ↓ ↓ ↓
• Q?−→ • F−→ • a−→ •
↑ ↑ ↑ ↑

expectations expectations expectations utility
of H of S of H measure
〈Ω,PH〉 〈Ω,PS〉 〈Ω,PH( . |F)〉 u(v,a)

We assume that S is fully cooperative and wants to maximise H’s final success;
i.e. S’s payoff, is identical with H’s. This is our representation of Grice’s Co-
operative Principle. S has to choose an answer that induces H to choose an
action that maximises their common payoff. In general, there may exist several
equally optimal actions a ∈B(F) which H may choose. Hence, the expected
utility of an answer depends on the probability with which H will choose the
different actions. We can assume that this probability is given by a probability
measure h(.|F) on A . Then, the expected utility of an answer F is defined by:

EUS(F) := ∑
a∈B(F)

h(a|F)×EUS(a). (4.33)

We add here a further Gricean maxim, the Maxim of Quality. We call
an answer F admissible if PS(F) = 1. The Maxim of Quality is represented
by the assumption that the speaker S does only give admissible answers. This
means that he believes them to be true. For an interpreted support problem
σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉 we set:

Admσ := {F ⊆Ω |PS(F) = 1} (4.34)

Hence, the set of optimal answers in σ is given by:

Opσ := {F ∈ Admσ | ∀B ∈ Admσ EUS(B)≤ EUS(F)}. (4.35)

We write Oph
σ if we want to make the dependency of Op on h explicit. Opσ

is the set of optimal answers for the support problem σ . Condition (4.31), it
follows that all propositions A ⊆ Ω can be expressed. Hence, we can think of
Opσ as a subset of P(Ω) or as a subset of F .

The behaviour of interlocutors can be modelled by strategies. A strategy
is a function which tells us for each information state of an agent which actions
he may choose. It is not necessary that a strategy picks out a unique action for
each information state. A mixed strategy is a strategy which chooses actions
with certain probabilities. The hearer strategy h(.|F) is an example of a mixed
strategy. We define a (mixed) strategy pair for an interpreted support problem
σ to be a pair (s,h) such that s is a probability distribution over F and h(.|F) a
probability distribution over A .
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We may call a strategy pair (s,h) a solution to σ iff h(.|F) is a probability
distribution over B(F), and s a probability distribution over Oph

σ . In general,
the solution to a support problem is not uniquely defined. Therefore, we intro-
duce the notion of the canonical solution.

Definition 4.3 Let σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉 be a given interpreted support
problem. The canonical solution to σ is a pair (S,H) of mixed strategies which
satisfy:

S(F) =
{
|Opσ |−1, F ∈ Opσ

0 otherwise
, H(a|F) =

{
|B(F)|−1, a ∈B(F)
0 otherwise

. (4.36)

We write S( . |σ) if S is a function that maps each σ ∈S to the speaker’s part
of the canonical solution, and H( . |Dσ ) if H is a function that maps the associ-
ated decision problem Dσ to the hearer’s part of the canonical solution. From
now on, we will always assume that speaker and hearer follow the canonical
strategies S( . |σ) and H( . |Dσ ). We make this assumption because it is con-
venient to have a unique solution to a support problem; the only property that
we really need in the following proofs is that H(a|F) > 0⇔ a ∈ B(F) and
S(F |σ) > 0⇔ F ∈ Opσ .

The speaker may always answer everything he knows, i.e. he may answer
KS := {v ∈ Ω |PS(v) > 0}. Condition (4.32) trivially entails that B(KS) = {a ∈
A | ∀b ∈ A EUS(b) ≤ EUS(a)}. If speaker and hearer follow the canonical
solution, and if we ignore the different costs of answers, then:

Opσ = {F ∈ Admσ |B(F)⊆B(KS)}. (4.37)

In order to show (4.37), let F ∈ Adm and α := max{EUS(a) | a ∈ A }. For
a ∈ B(F) \B(KS) it holds by definition that EUS(a) < α and H(a|F) > 0.
EUS(F) is the sum of all H(a|F)×EUS(a). If B(F) 6⊆B(KS), then this sum
divides into the sum over all a ∈ B(F) \B(KS) and all a ∈ B(F)∩B(KS).
Hence, EUS(F) < α , and therefore F 6∈ Opσ .

If B(F) 6⊆B(KS), then the speaker knows that answering F would in-
duce the addressee to choose a sub–optimal action with positive probability. In
this sense, we can call an answer F misleading if B(F) 6⊆B(KS); then, (4.37)
implies that Opσ is the set of all non–misleading answers.

4.3 Signalling Games and the Optimal Answer Model

We first recall the definition of signalling games from the previous sections. A
signalling game is a tuple 〈Ω,Θ,P, p,F ,A ,u〉 for which: (1) Ω and Θ are non–
empty finite sets; (2) P( . ) is a probability distribution over Ω; (3) p( . |v) is a
probability distribution over Θ for every v ∈ Ω; (4) F and A are respectively
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the speaker’s and hearer’s action sets; and (5) u : Ω×Θ×F ×A → R is a
shared utility function. We also assumed that u(v,θ ,F,a) can be decomposed
into u(v,a)− c(F) for some positive value c(F).

We first discuss the consequences of interpreting the probabilities for sig-
nalling games as objective frequencies and that for support problems as subjec-
tive probabilities.

If S is a set of support problems with identical decision problems, we can
construct a corresponding signalling game. As it is assumed that the speaker
knows the full support problem, we can identify S with the set of speaker’s
types Θ. The action sets and the utility function of the signalling game are
just the same as that of the support problems. As the decision problems of the
support problems in S are identical, this poses no problem. The only non–
trivial correspondence is that of the probabilities.

As mentioned before, we regard the probabilities P and p of the signalling
game as objective frequencies. Under this interpretation, Lemma 2.3 states the
objective conditions for optimal signalling strategies. If we interpret Pσ

S and
Pσ

H as the agents’ representations for these objective probabilities, then PS must
be identical to µS, and PH to P.3 (4.32) then entails that PH(v|KS) = µS(v|σ).
It holds PH(v|KS) = µS(v|σ) iff P(v)/P(KS) = P(v) p(σ |v)/µ(σ) iff p(σ |v) =
µ(σ)/P(KS). The last term does not depend on v, hence, it follows that (4.32)
entails that p(σ |v) must be the same for all v ∈ KS.

In (Benz and van Rooij, 2007), we identified PS with P( . |KS), and PH with
P. Then (4.32) trivially holds. p was considered to be a representation of the
hearer’s subjective expectations about the speaker’s types. In order to distin-
guish the hearer’s subjective probabilities about the speaker’s type from the ob-
jective frequencies, we write pH for the former, and keep p for the latter. Subjec-
tive probabilities per se have no causal influence on the objective probabilities.
Hence, pH is logically independent from P and p. Under this interpretation, it
can be shown that the strategy pair (S,H) defined by the canonical solutions to
the support problems (4.36) is optimal for all possible pH. This result follows
from Lemma 2.3 if we assume that the objective frequencies represented by p
in the signalling game again satisfy p(σ |v) = µ(σ)/P(KS). Then, whatever the
subjective expectations of the hearer about the speaker’s types are, the canoni-
cal strategy will satisfy (2.9), and hence be optimal in the sense that there is no
other strategy pair with higher expected utility.

In this paper, we go one step further and completely separate the sub-
jective cognitive level from the objective level. Hence, we interpret the proba-
bilities PS and PH in the support problems as subjective probabilities which are
logically independent of the frequencies P and p of the underlying signalling
game. As PS and PH are subjective, they don’t change the objective information

3The probabilities µS and µ have been defined in (2.2) and (2.3).
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available to S and H. Hence, we can freely assign these probabilities to the
interlocutors without changing the signalling game on the objective level. Sub-
jective probabilities determine the speaker’s and the hearer’s strategies. These
strategies are the only connection between the cognitive and the realistic level.

What is the advantage of separating the cognitive and the objective level?
There are two issues involved: the epistemic issue of the recognisability of ob-
jective frequencies, and the issue of bounded rationality. For the epistemic
issue, the objective frequencies are largely unknown to the interlocutors. The
speaker may learn his type θ e.g. by direct observation, by an inductive in-
ference, by hear-say, or from a conversation with someone else. Hence, there
are so many and so varied sources for the acquisition of belief type θ that it is
not to be expected that the hearer or the speaker can provide any justified esti-
mate of p(θ |v). In this respect, conversation can be characterised as a game of
complete uncertainty. Even though, we can assign rationally justified subjec-
tive probabilities which describe the agent’s behaviour on the cognitive level.
This move allows us to treat communication as a game under risk. For the
issue of bounded rationality, it doesn’t deem us a realistic assumption that in-
terlocutors do an online calculation of their conditional probabilities µS and µH

defined in (2.2). The established solution concept for signalling games is that of
a perfect Baysian equilibrium. Hence, even if we could assume that the inter-
locutors know the objective frequencies P and p, the complexity of calculating
the Bayesian perfect equilibria would make the resulting model cognitively im-
plausible. By separating the cognitive and the objective level of reality, we can
justify simpler solutions to the coordination problem, and at the same time ex-
plain their objective success.

What is our approach to the problem of bounded rationality? If we want
to show that a strategy pair (S,H) is a successful solution to a signalling game,
we have to show that it is a Perfect Baysian equilibrium in the objective sense.
We will even show that the strategies established on the cognitive level are such
that they Pareto dominate all other solutions. Hence, our strategy for solving the
problem of bounded rationality is to search for the simplest solution on the cog-
nitive level that can guarantees objective success. As the discussion of relevance
scale approaches in (Benz, 2006, 2007) shows, the interlocutors have to solve
a game theoretic problem, i.e. it is not possible to guarantee objective commu-
nicative success by simply applying decision theoretically defined solutions on
the cognitive level. Signalling games are sequential games. The simplest so-
lution to a sequential game is that found by backward induction. Hence, the
optimal answer model claims that the most simple solution concept for sequen-
tial games is already successful. Moreover, it involves that the hearer does not
need to take his expectations pH about the speaker’s types θ into account. This
leads to our main criterion of simplicity: we assume that a method for finding
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a solution (S,H) is the simpler the less reasoning about each other is involved
in it. In terms of the IBR model, this means that a R0–S1 reasoning sequence is
sufficient for finding reliable stable equilibria.

In order to decide whether the canonical strategy determined by a set
of support problems is a Pareto optimal equilibrium for the related signalling
game, the logical relation between the objective frequencies of signalling games
and the subjective probabilities of sets of support problems play a central role.
We consider the following relations:

Definition 4.4 Let S be a set of interpreted support problems. Let’s assume
that the support problems σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉 may only differ with
respect to Pσ

S . Let G = 〈Ω,Θ,P, p,F ,A ,u〉 be any basic signalling game for
which Θ = S and µΘ(σ) = ∑v P(v) p(σ |v) > 0 for all σ ∈ S . We call the
speaker’s probability Pσ

S :

1. fully reliable if Pσ
S = µS( . |σ).

2. reliable if ∀v ∈Ω (µS(v|σ) > 0⇔ Pσ
S (v) > 0).

3. truth preserving if ∀v ∈Ω (µS(v|σ) > 0⇒ Pσ
S (v) > 0).

We say that:

4. G supports S iff all Pσ
S are reliable;

5. G fully supports S iff all Pσ
S are fully reliable;

6. G weakly supports S iff all Pσ
S are truth preserving.

Full reliability is stronger than reliability, and reliability is stronger than
truth preservingness. If PS is truth preserving then all believes of S are true in the
sense that Pσ

S (F) = 1 implies that the true state of the world must be an element
of F . This follows from P(v) = 0⇒ µS(v|σ) = P(v) p(σ |v) = 0.

Furthermore, we introduce two conventions: (1) If the support problem
does not specify a set of utterances F or costs of signals, then we assume that
for supporting signalling games it holds that F = P(Ω), and that u(v,θ ,F,a)
does only depend on v and a. (2) We also use the terminology of Def. 4.4 if Θ

and S can only be identified with each other by a bijective map. In this case,
we write θσ and σθ for the speaker type and the support problem which have
been identified with each other.

The following two lemmas provide the justification for the optimal an-
swer approach. The first one tells us that the canonical solution to a set of sup-
port problems is a Pareto Nash equilibrium for all fully supporting signalling
games. The second lemma strengthens this result for support problems with
expert speaker. In this case, the canonical solution is a Pareto Nash equilibrium
to all weakly supporting signalling games.
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Lemma 4.5 Let S be a set of interpreted support problems. Let’s assume that
the support problems σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉may only differ with respect
to Pσ

S . Let (S,H) be the canonical solution to S . Let G = 〈Ω,Θ,P, p,F ,A ,u〉
be any basic signalling game which fully supports S , i.e. Θ = S and the
speaker’s probabilities Pσ

S are fully reliable. Then (S,H) is a Pareto Nash equi-
librium of G .

Proof: The lemma follows if we can show that the canonical solution satisfies
(2.9) for all F ∈F . Hence, let F be given, and σ be such that ∃vP(v) p(σ |v) >
0. By definition, S(F |σ) > 0 iff F ∈ Opσ ; hence, it follows from (4.37) and the
definition of the canonical hearer strategy that H(a|F) > 0 entails a ∈B(Kσ

S )
with Kσ

S = {v ∈Ω |Pσ
S (v) > 0}. As PS is fully reliable, it follows that B(Kσ

S ) =
B(σ), and therefore that H(a|F) > 0⇒ a ∈ B(σ). Hence, S(F |σ) > 0⇒
H(B(σ)|F) = 1.

For support problems with expert speakers, we arrive at a stronger result:

Lemma 4.6 Let S be a set of interpreted support problems. Let’s assume that
the support problems σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉may only differ with respect
to Pσ

S . Let us further assume that the speaker is an expert, i.e.

∀σ ∈S ∃a ∈A Pσ
S (O(a)) = 1.

Let (S,H) be the canonical solution to S . Let G = 〈Ω,Θ,P, p,F ,A ,u〉 be
any signalling game which weakly supports S. Then (S,H) is a Pareto Nash
equilibrium of G .

Proof: That the speaker is an expert entails that B(Kσ
S ) = {a∈A |Pσ

S (O(a)) =
1}. As µS(v|σ) > 0⇒ Pσ

S (v) > 0, it follows that B(Kσ
S ) ⊆B(σ). Hence, the

claim follows as in the proof of Lemma 4.5.

It is an obvious question, how to construct a signalling game G for a given
set of support problems S so that G is fully supporting S . The answer will be
provided by the next lemma. Finally, we will also address the question how and
when we can construct a set S of support problems for a given signalling game
G such that G supports S .

Lemma 4.7 Let S be a set of interpreted support problems. Let’s assume
that the support problems σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉 may only differ with
respect to Pσ

S . Let µ be any probability measure on S for which µ(σ) >
0 for all σ ∈ S . Then let ν(v,σ) := µ(σ) Pσ

S (v), P(v) := ∑σ ν(v,σ), and
p(σ |v) := ν(v,σ)/P(v). Then ν is a probability measure on Ω×S , and
G = 〈Ω,Θ,P, p,F ,A ,u〉 is fully supporting S .

Proof: As ∑v,σ µ(σ) Pσ
S (v) = ∑σ µ(σ)∑v Pσ

S (v) = 1, ν is a probability mea-
sure on Ω×S . That G supports S follows from µΘ(σ) = ∑w P(w) p(σ |w) =
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∑w ν(w,σ) = µ(σ) ∑w Pσ
S (w) = µ(σ); hence µΘ(σ) > 0 for all σ ∈ S . Fi-

nally, µS(v|σ) = P(v) p(σ |v)
∑w P(w) p(σ |w) = ν(v,σ)

∑w ν(w,σ) = Pσ
S (v)

∑w Pσ
S (w) = Pσ

S (v). Hence, G =
〈Ω,Θ,P, p,F ,A ,u〉 is fully supporting S .

The inverse construction is not always possible. We already have seen
that (4.32) entails that, for signalling games which fully support a set of support
problems, p(θ |v) must be the same for all v ∈ KS. Hence, there cannot be for
every signalling game a set of support problems which is fully supported by
it. If G is such that p(θ |v) is the same for all v ∈ Kθ

S := {v ∈ Ω | µ(v|θ) >
0}, then we can set Pθ

S (v) := P(v|Kθ
S ) and Pθ

H (v) := P(v|Kθ
H ) with Kθ

H := {v ∈
Ω |P(v) > 0}. Then Kθ

H and Pθ
H do not depend on θ , and we find µ(v|θ) =

P(v) p(θ |v)/∑w(P(w) p(θ |w)) = P(v)/P(Kθ
S ) = P(v|Kθ

S ) = PH(v|Kθ
S ) = Pθ

S (v).
For the general case, we either have to give up (4.32) or full reliability.

If we decide to give up (4.32), then we can set Pθ
S = µ(v|θ) and e.g. PH(v) =

P(v), and arrive for each θ at a support problem with fully reliable speaker
expectations. If we decide to give up full reliability, then we can set Pθ

S (v) =
P(v|Kθ

S ) and PH = P, and arrive for each θ at a reliable support problem which
satisfies (4.32). In either case, PH does not depend on θ . Hence, the support
problems in the constructed set S do only differ with respect to PS.

We summarise the result:

Lemma 4.8 Let G = 〈Ω,Θ,P, p,F ,A ,u〉 be a given signalling game. For θ ∈
Θ, let Kθ

S := {v ∈ Ω |µ(v|θ) > 0}, Pθ
S (v) := P(v|Kθ

S ), and Pθ
H := P. Let σθ be

the resulting support problem. Then, the Pθ
S are reliable, and it holds:

1. the support problems σθ satisfy (4.32): Pσθ

S = P(v|Kθ
S ) = PH(v|Kθ

S ).

2. If, in addition, p(θ |v) is the same for all v ∈ Kθ
S , then the support problems

σθ are also fully reliable, i.e. Pσθ

S = µ( . |θ).
Support problems which do not satisfy (4.32) were considered in (Benz,

2006).

5 Implicatures

In this section, we apply the ideas of Section 3 to signalling games and prove
more explicit characterisations of implicatures. We assume throughout that a
fixed signalling game G = 〈Ω,Θ,P, p,F ,A ,u〉 together with as strategy pair
(S,H) is given. As explained in Section 3, 〈G ,S,H〉 defines a linear causal
Bayesian network (Xi, pi)i=0,...,3 if we identify X0 with Ω, X1 with Θ, X2 with
F , and X3 with A ; accordingly, we set p0 = P, p1 = p, p2 = S, and p3 = H.
In this section, we write µ(θ) and µ(F) for the marginal probabilities µ1(θ)
and µ2(F), and µ(θ |F) for the conditional marginal probability µ1|2(θ |F).4

4The definitions of these probability distributions in the form of explicit sums can be found
in (2.3) and (6.52).
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We write, by a small mis-use of logical notation, 〈G ,S,H〉 |= F +> R if
the utterance of F implicates R. In Lemma 3.4, we have shown that for any set
Y ⊆F and X ⊆Xi it holds that:

〈G ,S,H〉 |= Y +> X ⇐⇒ µi|F (X |Y ) = 1 (5.38)

In traditional theories of implicatures, it is assumed that an implicature provides
information about the world or the speaker’s information state in addition to the
literally communicated information. Therefore, we are now concentrating on
the cases Xi = Ω and Xi = Θ; i.e. we are looking for a characterisation of
implicatures about the world and the speaker’s state. For F ⊆F with µF(F) >
0, and R0 ⊆Ω or R1 ⊆Θ, the criterion in (5.38) reads as:

〈G ,S,H〉 |= F +> Ri ⇐⇒ µ(Ri|F) = 1. (5.39)

By definition, µ(Ri|F) = 1 is equivalent to

µ(π−1
i [Ri]∩π

−1
F [F ])

µ(π−1
F [F ])

= 1. (5.40)

We first consider R1, which is a subset of Θ. Then (5.40) is equivalent to {θ ∈
R1 |µΘ(θ) > 0∧S(F |θ) > 0}⊇ {θ ∈Θ |µΘ(θ) > 0∧S(F |θ) > 0}. If µΘ(θ) > 0
for all θ ∈Θ, then this formula is again equivalent to ∀θ : S(F |θ) > 0⇒ θ ∈R1.

We now turn to the implicatures about the state of the world, i.e. to R0,
which is a subset of Ω. Then (5.40) is equivalent to {v ∈ R0 | P(v) > 0 ∧
∃θ (p(θ |v) > 0∧S(F |θ) > 0)}⊇ {v∈Ω |P(v) > 0∧∃θ (p(θ |v) > 0∧S(F |θ) >
0)}. If P(v) > 0 for all v ∈ Ω, then this formula is again equivalent to ∀v :
µ(F |v) > 0⇒ v ∈ R0.

We summarise this result in the following proposition:

Proposition 5.1 Let G = 〈Ω,Θ,P, p,F ,A ,u〉 be a signalling game and (S,H)
a strategy pair. Let F ⊆F with µF(F) > 0. Then it holds:

1. If R⊆Θ, and if for all θ ∈Θ µΘ(θ) > 0, then

〈G ,S,H〉 |= F +> R ⇐⇒ ∀θ : S(F |θ) > 0⇒ θ ∈ R. (5.41)

2. If R⊆Ω, and if for all v ∈Ω P(v) > 0, then

〈G ,S,H〉 |= F +> R ⇐⇒ ∀v : µ(F |v) > 0⇒ v ∈ R. (5.42)

Note that the implicatures are completely independent of the meaning of
the signals in F . Hence, they are also defined for situations in which the signals
have no pre-defined semantic meaning. The implicature of a signal coincides
with Lewis notion of indicated meaning (2002). Lewis defined the semantic
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meaning of signals as their indicated meaning. In this way, he could explain
how the semantics of signals can emerge from a convention about their use. If
we assume that a semantics is already established, then the indicated meaning
may exceed this pre-defined semantic meaning. This additional information is
commonly called an implicature. Our definition in (5.39) differs from common
usage of the word implicature in so far as the literal meaning of a signal, if
defined, is subsumed by implicated meaning. We can define a stronger notion
of implicature which is more in accordance with the common usage. According
to this notion, an utterance of F implicates R only if R does not already follow
from the communicated semantic meaning of F . We only introduce this notion
in order to show that an equivalent to the common notion of implicature can
easily be derived from our definition; but the concept of proprt implicatures
will not be used anywhere in this paper.

Definition 5.2 (Proper Implicatures) Let S be a set of interpreted support
problems 〈Ω,PS,PH,F ,A ,u,c,J . K〉 which may only differ with respect to PS.
Let (S,H) be a strategy pair for S . For R ⊆ Ω, F ∈ F , and JFK∗ := {v ∈
JFK |PH(v) > 0}, we say that the utterance of F properly implicates that R in
〈S ,S,H〉 iff 〈S ,S,H〉 |= F +> R & JFK∗ \R 6= /0.

We now turn our attention to support problems. In (Benz, 2008), the
implicatures R⊆Ω of a sentence F in a given set of support problems S were
defined by 〈S ,S,H〉 |= F +> R ⇐⇒ ∀σ ∈S (F ∈ Opσ ⇒ Pσ

S (R) = 1). We
now show that:

Lemma 5.3 Let S be a set of support problems σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉
which only differ with respect to Pσ

S . Let G0 and G1 both be signalling games
which support S . Let (S,H) be a pair of signalling strategies for G0 and G1.
Then, it holds:

1. µ〈G0,S,H〉(F) > 0 iff µ〈G1,S,H〉(F) > 0.

2. If µ〈Gi,S,H〉(F) > 0 and R⊆Ω, then it holds:

〈Gi,S,H〉 |= F +> R ⇐⇒ ∀σ ∈S (S(F |σ) > 0⇒ Pσ
S (R) = 1). (5.43)

3. If µ〈Gi,S,H〉(F) > 0 and R⊆Ω, then it holds:

〈G0,S,H〉 |= F +> R ⇐⇒ 〈G1,S,H〉 |= F +> R. (5.44)

Proof: That the Gi support S implies, by Def. 4.4, that for all v ∈Ω: Pσ
S (v) >

0⇔ PGi(v) pGi(σ |v) > 0. By definition of µ(F) in (2.3), µ〈Gi,S,H〉(F) > 0 iff
∑v,σ PGi(v) pGi(σ |v) S(F |σ) > 0. As the Gi support S , the latter is equivalent
to ∑v,σ Pσ

S (v)S(F |σ) > 0. From this, the first claim follows immediately.
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Let us now only consider G0. Let µ(v,σ ,F) := P(v) p(σ |v)S(F |σ). Then,
with (5.42) we find

〈G0,S,H〉 |= F +> R⇔∀v : µ(F |v) > 0⇒ v ∈ R (5.45)
⇔{〈v,σ ,F〉 |µ(v,σ ,F) > 0} ⊆ {〈v,σ ,F〉 |µ(v,σ ,F) > 0∧ v ∈ R}.

As all Pσ
S are reliable, the last condition is equivalent to {〈v,σ ,F〉 |Pσ

S (v) >
0∧S(F |σ) > 0} ⊆ {〈v,σ ,F〉 |Pσ

S (v) > 0∧S(F |σ) > 0∧ v ∈ R}. This is again
equivalent to ∀v,σ (Pσ

S (v) > 0∧S(F |σ) > 0⇒ v ∈ R), which finally is equiva-
lent to ∀σ (S(F |σ) > 0⇒ Pσ

S (R) = 1). This proves the second claim. The third
claim follows immediately from the second.

With (5.44), we can define:

Definition 5.4 Let S be a set of support problems σ which only differ with
respect to Pσ

S . Let Supp(S ) be the set of all signalling games G which support
S . Let (S,H) be any strategy pair for S , and let F ∈F be such that ∃σ ∈
S S(F |σ) > 0. Then we set for R⊆Ω:

〈S ,S,H〉 |= F +> R ⇐⇒ ∀G ∈ Supp(S ) 〈G ,S,H〉 |= F +> R. (5.46)

Note that by Lemma 4.7 Supp(S ) is never empty. If (S,H) is the canonical
solution to S , we arrive with (5.43) at:

〈S ,S,H〉 |= F +> R ⇐⇒ ∀σ ∈S (F ∈ Opσ ⇒ Pσ
S (R) = 1). (5.47)

Starting from (5.47), we can derive criteria for special but frequent situa-
tions. The remainder of the section presents some results from (Benz, 2008).

First, we note that, as the hearer has to check all support problems in
S , we arrive at the more implicatures the smaller S becomes. If S = {σ}
and F ∈ Opσ , then F will implicate everything the speaker knows. The other
extreme is the case in which answers implicate only what they logically entail.
We show in Proposition 5.7 that this case can occur.

We are interested in cases in which the speaker is a real expert. If he is
an expert, then we can show that there is a very simple criterion for calculating
implicatures. We can call the speaker an expert if he knows the actual world;
but we will see that a weaker condition is sufficient for our purposes. To make
precise what we mean by expert, we introduce another important notion, the set
O(a) of all worlds in which an action a is optimal:

O(a) := {w ∈Ω | ∀b ∈A u(w,a)≥ u(w,b)}. (5.48)

We say that the answering person is an expert for a decision problem if there
is an action which is an optimal action in all his epistemically possible worlds.
We represent this information in S :
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Definition 5.5 (Expert) Let S be a set of support problems with joint decision
problem 〈(Ω,PH),A ,u〉. Then we call S an expert in a support problem σ if
∃a ∈A Pσ

S (O(a)) = 1. He is an expert in S , if he is an expert in every σ ∈S .

This leads us to the following criterion for implicatures:

Lemma 5.6 Let S be a set of support problems with joint decision problem
〈(Ω,PH),A ,u〉, and (S,H) its canonical solution. Assume furthermore that E is
an expert for every σ ∈S and that ∀v ∈Ω∃σ ∈S Pσ

S (v) = 1. Let σ ∈S and
F,R⊆Ω be two propositions with F ∈ Opσ . Then, with F∗ := {v ∈Ω |PH(v) >
0}, it holds that:

〈S ,S,H〉 |= F +> R iff F∗∩
⋂

a∈B(F)

O(a)⊆ R. (5.49)

Proof: We first show that

(∃a ∈A Pσ
S (O(a)) = 1 & F ∈Opσ )⇒∀a ∈B(A) : Pσ

S (O(a)) = 1. (5.50)

Let a,b be such that Pσ
S (O(a)) = 1 and Pσ

S (O(b)) < 1. Then

EUσ
E (b) = ∑

v∈O(a)
Pσ

S (v) ·u(v,b) < ∑
v∈O(a)∩O(b)

Pσ
S (v) ·u(v,a)

+ ∑
v∈O(a)\O(b)

Pσ
S (v) ·u(v,a) = EUσ

E (a).

With KS = {v ∈ Ω |Pσ
S (v) > 0} it follows that b 6∈B(KS), and by (4.37) that

b 6∈B(A). Hence, b ∈B(A) implies Pσ
S (O(b)) = 1.

Let F+ :=
⋂

a∈B(A) O(a). We first show that F∗∩F+⊆R implies F +> R.
Let σ̂ ∈S be such that F ∈ Opσ̂ . We have to show that Pσ̂

S (R) = 1. By (5.50)
Pσ̂

S (F+) = Pσ̂
S (
⋂

a∈B(A) O(a)) = 1 and by (4.32) Pσ̂
S (F∗) = 1; hence Pσ̂

S (F+∩
F∗) = 1, and it follows that Pσ̂

S (R) = 1.
Next, we show F +> R implies F∗∩F+ ⊆ R. Suppose that F∗∩F+ 6⊆ R.

Let w ∈ F∗∩F+ \R. From condition ∀v ∈Ω∃σ̂ ∈S Pσ̂
S (v) = 1 it follows that

there is a support problem σ̂ such that Pσ̂
S (w) = 1. As w ∈ F+, it follows by

(4.37) that F ∈Opσ̂ . Due to F +> R, it follows that Pσ̂
S (R) = 1, in contradiction

to w 6∈ R.
F∗ is the equivalent to the common ground updated with F . In the con-

text of a support problem, we can interpret an answer F as a recommendation
to choose one of the action in B(F). We may say that the recommendation
is felicitous only if all recommended actions are optimal. Hence, F+ repre-
sents the information that follows from the felicity of the speech act of recom-
mendation which is associated to the answer. It should also be mentioned that
B(F) = B(F∗) by Definition 4.30; hence

⋂
a∈B(F) O(a) =

⋂
a∈B(F∗) O(a)
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It is not uninteresting to see that the expert assumption on its own does
not guarantee that an utterance has non–trivial implicatures. There are sets S
in which the conditions of Lemma 5.6 hold but in which answers only implicate
what they entail:

Proposition 5.7 Let S be a set of support problems with joint decision problem
〈(Ω,PH),A ,u〉. Let (S,H) be the canonical solution. Assume that for all X ⊆Ω,
X 6= /0 : ∃σ ∈ S Kσ

S = X and ∃a ∈ A O(a) = X. Then, for all σ ∈ S with
F ∈ Opσ it holds ∀R⊆Ω : 〈S ,S,H〉 |= F +> R⇔ F∗ ⊆ R.

Proof: Condition ∀X 6= /0∃a ∈A O(a) = X trivially entails that E is an expert
for all σ ∈S . Condition ∀X 6= /0∃σ ∈S Kσ

S = X entails the second condition
of Lem. 5.6: ∀v ∈ Ω∃σ ∈S Pσ

S (v) = 1. Then, let F ∈ Opσ and let a∗ be such
that O(a∗) = F∗; as B(F) = B(F∗), it follows that

⋂
{O(a) | a ∈ B(F)} =⋂

{O(a) |a ∈B(F∗)}= O(a∗) = F∗. Hence, by Lem. 5.6, F +> R iff F∗ ⊆ R.

This proposition also shows that the conditions of Lemma 5.6 are less
restrictive than they might seem to be.

6 The Fundamental Lemma

In this section we prove Lemma 2.3. For convenience, let us again repeat the
definition of signalling games from Definition 2.1. A signalling game is a struc-
ture 〈Ω,Θ,P, p,F ,A ,u〉 for which: (1) Ω and Θ are non–empty finite sets; (2)
P( . ) is a probability distribution over Ω; (3) p( . |v) is a probability distribu-
tion over Θ for every v ∈ Ω; (4) F and A are respectively the speaker’s and
hearer’s action sets; and (5) u : Ω×Θ×F ×A → R is a shared utility func-
tion which can be decomposed such that u(v,θ ,F,a) = u(v,a)− c(F) for some
strictly positive function c : F → R+.

We first introduce Bayesian perfect equilibria and then prove Lemma 2.3.
As mentioned before, it can be more convenient to calculate the Bayesian per-
fect equilibria than the Nash equilibria of a signalling game.

Definition 6.1 (Perfect Bayesian Equilibrium) A strategy pair (S,H) is a per-
fect Bayeasian equilibrium of a signalling game 〈Ω,Θ,P, p,F ,A ,u〉 iff:

1. For all S′ and all θ with µ(θ) > 0 it is ES(S′|θ)≤ ES(S|θ),

2. For all H ′ and all F with µ(F) > 0 it is EH(H ′|F)≤ EH(H|F).

The equilibrium is strict if we can replace ≤ by <. It is weak if it is not strict.

We show that the Bayesian perfect equilibria are the same as Nash equilibria
in the sense of Definition 2.2. For this we show that a hearer strategy H is a
best response to a speaker strategy S iff EH(H|F) is maximal for each F with
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non–negative probability. For the following calculations, it should be noted that
the payoff function u does not depend on θ . Hence, we could arbitrarily choose
a θ0 and keep it as a fixed argument of u. With µ(F) defined as before, it is:

E (H|S) = ∑
v∈Ω

P(v) ∑
θ∈Θ

p(θ |v) ∑
F∈F

S(F |θ) ∑
a∈A

H(a|F)u(v,θ ,F,a)

= ∑
F

µ(F)∑
v

∑
a

H(a|F)u(v,θ0,F,a)
P(v)∑θ∈Θ p(θ |v)S(F |θ)

µ(F)

= ∑
F

µ(F)∑
v

µH(v|F)∑
a

H(a|F)u(v,θ ,F,a)

= ∑
F∈F

µ(F)EH(H|F). (6.51)

Hence, for fixed speaker strategy S, E (H|S) becomes maximal iff EH(H|F) is
maximal for all F with µ(F) > 0, i.e. for all F for which the probability of
being received by the hearer is greater zero. Similarly, it can be shown that
E (S|H) = ∑θ µ(θ)ES(S|θ). Hence, the Bayesian perfect equilibria in the sense
of Definition 6.1 are identical to the Nash equilibria in the sense of Defini-
tion 2.2.

We now turn to the proof of Lemma 2.3. For this, we first reformulate the
hearer’s expected utility in terms of the conditional probability of the speaker’s
type being θ given answer F . This allows us to derive an estimate of the max-
imal expected utility. Hence, let us consider the expected utility EH(H|F) of a
hearer strategy H after receiving signal F . With (2.2) and (2.4), we find:

EH(H|F) = ∑
a

H(a|F) ∑v P(v) ∑θ p(θ |v)S(F |θ)
µ(F)

u(v,θ ,F,a)

=
1

µ(F) ∑
θ

S(F |θ)∑
a

H(a|F)∑
v

P(v) p(θ |v)u(v,θ ,F,a)

=
1

µ(F) ∑
θ

S(F |θ) µ(θ)∑
a

H(a|F)(ES(a|θ)− c(F))

= ∑
θ

S(F |θ) µ(θ)
µ(F) ∑

a
H(a|F)ES(a|θ)− c(F)

Let’s write

µΘ|F(θ |F) =
S(F |θ) µ(θ)

µ(F)
=

S(F |θ)∑w P(w) p(θ |w)
∑θ S(F |θ)∑w P(w) p(θ |w)

. (6.52)

This is the hearer’s probability of the speaker type being θ given F . In the
following, we will also use the short form µ(θ |F) for µΘ|F(θ |F). With this
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abbreviation, we can summarise the result as follows:

EH(H|F) = ∑
θ

µ(θ |F) ∑
a

H(a|F)ES(a|θ)− c(F) (6.53)

Let Mθ := maxa ES(a|θ). This is the maximal expected utility given θ . An
action is optimal given θ if its expected utility is maximal. Hence, ES(a|θ) = Mθ

iff a is an element of the set B(θ) of all actions with maximal expected utility,
which has been defined in (2.8) as:

B(θ) = {a ∈A | ∀b ∈A ES(b|θ)≤ ES(a|θ)}. (6.54)

Hence, for fixed θ we find:

1. If H(a|F) > 0⇒ a ∈B(θ), then

∑
a

H(a|F)ES(a|θ) = Mθ . (6.55)

2. If ∃a 6∈B(θ)H(a|F) > 0, then

∑
a

H(a|F)ES(a|θ) < Mθ . (6.56)

It follows then from (6.53) that a strategy H is guaranteed to be optimal if
µ(θ |F) > 0 entails for all θ that (H(a|F) > 0⇒ a∈B(θ))), i.e. H(B(θ)|θ) =
1. As mentioned before, we implicitly assume that in (6.52) the denominator
µ(F) of µ is greater zero. Hence, if µ(θ) > 0, i.e. if θ is assigned to the speaker
with a positive probability, then it follows that ∀θ(S(F |θ) > 0⇒H(B(θ)|F) =
1) entails that EH(H|F) is maximal.

These considerations lead to the following criteria. Let Θ∗ be the set of all
types θ for which ∃v P(v) p(θ |v) > 0, and let F ∈F . Let (S,H) be a strategy
pair which satisfies the following condition:

∀θ ∈Θ
∗ (S(F |θ) > 0⇒ H(B(θ)|F) = 1). (6.57)

Then it follows that H is a best response to F , i.e. for all hearer strategies H ′ it
holds that EH(H ′|F)≤ EH(H|F). Furthermore, if H ′ is such that

∃θ ∈Θ
∗ ∃a 6∈B(θ) (S(F |θ) > 0∧H ′(a|F) > 0), (6.58)

then EH(H ′|F) < EH(H|F). Equations (6.57) and (6.58) entail Lemma 2.3.
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Part B: The Refined Model

7 Implicatures and Ambiguity

In this section, we address a problem that is shared by all accounts that assume
that disambiguation is achieved by maximising expected utilities of interpre-
tations. This method of disambiguation is the central principle for explaining
pragmatic phenomena in Prashant Parikh’s framework of games of partial in-
formation (2001). His standard example is the following sentence showing a
scope ambiguity:

(2) a) Every ten minutes a man gets mugged in New York. (A)
b) Every ten minutes some man or other gets mugged in New York. (F)
c) Every ten minutes a particular man gets mugged in New York. (F ′)

The sentence A is ambiguous between the interpretation in which it is always
the same person which gets mugged (R′), and the interpretation in which it is a
random sequence of people who gets mugged (R). Speaker and hearer have to
coordinate their strategies such that the hearer arrives at the interpretation that
the speaker had in mind. With F being the unambiguous sentence with meaning
R, F ′ the unambiguous sentence with meaning R′, and ρ,ρ ′ the probabilities of
R,R′ respectively, we arrive at the game tree shown in Figure 4. First nature
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Fig. 4: Parikh’s game tree for Example (2).

chooses between R and R′. If it has chosen R, then the speaker in situation θ

has the choice between the unambiguous but more complex F and the ambigu-
ous but simpler A. If nature has chosen R′, then the speaker in situation θ ′ has
the choice between the unambiguous but more complex F ′ and again the am-
biguous but simpler A. If the speaker chooses F or F ′, then there is only one
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interpretation which the hearer can choose. If the speaker choses A, then the
ambiguity of A leads to the choice between two different interpretations. The
numbers at the end of the branches denote the shared utilities of speaker and
hearer.

Prashant Parikh solves this game by calculating the Nash equilibria, and,
if there is more than one Nash equilibrium, choosing the equilibrium which
leads to the higher overall expected payoff, the so–called Pareto Nash equlib-
rium. It is easy to see that there are exactly two Nash equilibria in the situation
of Figure 4: One Nash equilibrium (S,H) in which the speaker chooses F in θ

and A in θ ′, and in which the hearer interprets A by R′; another Nash equilib-
rium (S′,H ′) in which the speaker chooses F ′ in θ ′ and A in θ , and in which
the hearer interprets A by R. As the probability ρ of it being always the same
man who gets mugged is much lower than the probability ρ ′, the first strategy
will more often avoid the use of the complex formula F ′, and hence lead to a
higher overall expected utility. Hence, the first strategy pair (S,H) is the unique
Pareto Nash equilibrium of this game, and the hearer will interpret A as meaning
R. According to Parikh, this shows that the utterance of A communicates with
certainty that R (Parikh, 1990), (Parikh, 2006)[p. 104].

Implicatures are explained by Parikh (2001) along the same lines. He as-
sumes that an utterance is ambiguous between the literal meaning (A) and the
literal meaning + implicature (A+R). The implicature A+> R′ is explained by
the fact that for the Pareto Nash equilibrium (S,H) which solves the resulting
game it holds that H(A) = R′. This account is principally different from the
account provided in the Optimal Answer model. There, the solution (S,H) is
calculated by backward induction,5 and the implicature is identified with the
additional information that an utterance A provides about the speaker’s infor-
mation state, i.e. with S−1(A). But, although the two approaches differ here, the
same predictions about disambiguation are made in the Optimal Answer model
and in Parikh’s model.

Our principal counterexample against the idea that ambiguities are re-
solved by choosing the more probable interpretation, and hence that this inter-
pretation is thereby communicated with certainty, is the Doctor’s Appointment
example:

(3) John is known to regularly consult two different doctors, physicians A and
B. He consults A more often than B. S meets H and tells him:

S: John has a doctor’s appointment at 4pm. He requests you to pick him
up afterwards. (D)

5As we have shown in Lemma 4.5, the solution found by backward induction is always a
Pareto Nash equilibrium.
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Fig. 5: The game tree for the Doctor’s Appointment example.

Clearly, S fails to communicate that John waits at A’s practice. Structurally, the
situation is identical to the situation shown in Figur (4). In Figure 5, we see
the game tree of the Doctor’s Appointment example. The hearer has the choice
between two different interpretations: A that John is waiting at A’s practice, and
B that John is waiting at B’s practice. Hence, if rational interlocutors resolve
the ambiguity by choosing the more probable interpretation in Figur (4), then
in (3) they should resolve it in the same way. But in this case, D would have
to communicate with certainty that John has an appointment with physician A,
which is clearly not the case.

The problem does not only arise with Parikh’s model. In the Doctor’s Ap-
pointment example, backward induction predicts that D is an optimal assertion
if the speaker knows that John is at A’s practice but not if he knows that John
is at B’s practice. Hence, we are faced with the problem to explain why D is
not an optimal assertion in the Doctor’s Appointment example. This means,
we have to explain why backward induction is ruled out as a principle of dis-
ambiguation in the Doctor’s Appointment scenario. This problem leads us to
the consideration of games with noisy communication and efficient clarification
requests.

Let us consider the addressee’s natural reaction in the Doctor’s Appoint-
ment example (3). What would be the natural response to the directive (D) John
has a doctor’s appointment at 4pm. He requests you to pick him up afterwards?
Most probably, the addressee would just ask where John is waiting, at A’s or at
B’s practice. If the answering person S is cooperative and knows about John’s
whereabouts, then he will tell H where to pick up John. Hence, the natural
response to the ambiguity is a clarification request c which will induce S to pro-
vide an answer which allows H to unambiguously choose an optimal action a
afterwards. We call such clarification requests efficient if they come with low
costs and force the speaker to provide an unambiguously optimal answer. We
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add efficient clarification requests in the next section to our models.

8 Efficient clarification requests

Until now, our signalling games modelled situations in which the hearer has
immediately to decide which action to choose after receiving an answer from
the speaker. In this section, we add efficient clarification requests to the hearer’s
action set. In the context of noisy communication, the possibility to ask clarifi-
cation requests has a considerable effect on the equilibria of a game.

Assume that the hearer follows a strategy H which does not involve any
clarification requests. Assume further that the hearer knows the speaker strat-
egy S and receives an answer A. We now consider the question: When is it
reasonable for the hearer to change his strategy H( . |A) and ask a clarification
request? For answering this question, we consider the set Z(A) which consists
of all pairs 〈v,θ〉 which have positive probability, for which the speaker might
answer A, and for which this might lead the hearer to choose a sub–optimal
action. Clearly, for being optimal, S and H should be such that Z(A) is empty.
If it is not empty, the hearer can make it empty by changing H in such a way
that he asks a clarification request whenever answer A occurs. We can consider
this to be a local change in the sense that it only changes the hearer’s strategy
for answer A but leaves it unchanged for all other answers. Before we define
local changes, we first introduce signalling games with efficient clarification
requests:

Definition 8.1 Let G = 〈Ω,Θ,P, p,F ,A ,u〉 be a basic signalling game in the
sense of Def. 2.1. Then G is a signalling game with efficient clarification re-
quests iff there exists an act c∈A and a cost function c : F ∪{c}→R+ which
satisfy the following conditions:

1. (Efficiency): u(v,θ ,F,c) = µ(θ)Mθ − (c(F)+ c(c)),
with Mθ := maxa∈A \{c}ES(a|θ) and µ(θ) as in (2.3);

2. (Nominality): the cost function c is nominal;

3. (Avoid c): ∀A,B ∈F : |c(A)− c(B)|< c(c).

Mθ is the maximal expected utility given θ . Hence, efficiency means that c
achieves the maximal expected utility minus the costs of asking a clarification
request. Nominality entails that these costs are positive but arbitrarily small in
comparison to the utility of other actions. We will provide an exact definition
of nominality in Section 11. (Avoid c) says that if the speaker can find a more
complex answer B which avoids a clarification request, then he will choose B
rather than sticking to an answer A which he would have chosen otherwise.
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As B(θ) = {a ∈A |ES(a|θ) = Mθ}, it follows that c 6∈B(θ). With µ as
in (6.52), it also follows that:

EH(c|A) = ∑
θ

µ(θ |A)Mθ − (c(A)+ c(c)). (8.59)

The proof is completely parallel to that of (6.53). As signalling games with
efficient clarification requests are special cases of basic signalling games, it also
follows that Lemma 2.3 remains valid.

Now we consider a situation in which speaker and hearer follow some
strategy pair (S,H) which may violate condition (6.57). How can the hearer
modify his strategy in order to achieve the best result? Assume that he receives
answer A, then if there is a possibility that strategy H chooses a sub–optimal
action, it is better for the hearer to ask a clarification request. This is the case if
the following set Z(A) is not empty:

Z(A) := {〈v,θ〉 |P(v) p(θ |v)S(A|θ) > 0∧∃a 6∈B(θ)H(a|A) > 0}. (8.60)

Z(A) is the set of all pairs of worlds v and speaker’s types θ which have non–
zero probability, for which the speaker answers A with non–zero probability,
and for which H may choose a suboptimal action. It is convenient to collect the
worlds v and the types θ that belong to Z(A) in two separate sets:

Z1(A) := {v∈Ω |∃θ 〈v,θ〉 ∈ Z(A)}, and Z2(A) := {θ ∈Θ |∃v 〈v,θ〉 ∈ Z(A)}.

We show that if Z(A) 6= /0, then the hearer strategy H is strictly dominated by a
strategy HA

c which is defined as follows:

HA
c (a|B) :=

{
H(a|B) for B 6= A
1 for a = c and B = A . (8.61)

The strategy HA
c is identical to H for all answers except A. For A it chooses a

clarification request. We show the following proposition:

Proposition 8.2 Let (S,H) be any strategy pair of a given signalling game G
with efficient clarification request c. Assume that µF(A) > 0, see (2.3). With
µ(v,θ) := P(v) p(θ |v), µH as in (2.2), and µΘ|F as in (6.52), the following equiv-
alences hold:

Z(A) 6= /0⇔ µ(Z(A)) > 0⇔ P(Z1(A)) > 0⇔ µH(Z1(A)|A) > 0 (8.62)
⇔ µΘ|F(Z2(A)|A) > 0.

It holds:

1. If Z(A) 6= /0, then HA
c strictly dominates H.

2. If Z(A) = /0, then H strictly dominates HA
c .
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Proof: The equivalences follow by unfolding the definitions. By (6.53) it
holds that EH(H|A) = ∑θ µΘ|F(θ |A) ∑a H(a|A) ES(a|θ)− c(A). We can split
the sum ∑θ into ∑θ∈Z2(A) and ∑θ 6∈Z2(A). Hence, if Z(A) = /0, and therefore
µΘ|F(Z2(A)|A) = 0, then

EH(H|A) = ∑
θ 6∈Z2(A)

µΘ|F(θ |A)Mθ − c(A)

> ∑
θ 6∈Z2(A)

µΘ|F(θ |A)Mθ − (c(A)+ c(c)) = EH(HA
c |A).

Hence, H strictly dominates HA
c . Next, assume that Z(A) 6= /0. This entails that:

∑
θ

µΘ|F(θ |A)∑
a

H(a|A)ES(a|θ) < ∑
θ

µΘ|F(θ |A)Mθ

Hence, it follows with (Nominality) that

EH(H|A) = ∑
θ

µΘ|F(θ |A)∑
a

H(a|A)ES(a|θ)− c(A)

< ∑
θ

µΘ|F(θ |A)Mθ − (c(A)+ c(c)) = EH(HA
c |A).

Hence, HA
c strictly dominates H.

The proposition shows how the hearer can improve his strategy for answer
A without changing his strategy for answers different from A. We will exploit
this property in the next section. In the same section, we will also see that
a clarification request is not always the best response in situations in which
the old strategy H would lead to sub–optimal choices. Proposition 8.2 only
says that reacting with a clarification request is better than sticking to a faulty
strategy, but there may be other possibilities to improve the old strategy. For
achieving this result, we have to have a closer look at Z(A). But this is more
interesting in the context of noisy speaker strategies. We introduce models with
expected noise in the next section, and will take up our consideration of Z(A) in
Section 10.

9 Expected Noise

There exist quite a number of equilibrium refinements in game theory which
try to spell out which equilibria are stable under the assumption that strategies
are noisy. Among the most widely discussed equilibria which deal with noisy
strategies are trembling hand perfect equilibria (Selten, 1975) and proper equi-
libria (Myerson, 1978). In the context of support problems, a trembling hand
prefect equilibrium is a pair of mixed strategies (s,h) such that there exists a
sequence (sk,hk)∞

k=0 of completely mixed strategies which converge to (s,h)
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such that s is a best responses to each hk and h to each sk. A strategy is com-
pletely mixed if it chooses every possible action with positive probability. That
(s,h) is robust against small mistakes is captured by the condition that s and h
need only to be best responses if hk and sk come close to h and s. For proper
equilibria it is assumed that the probability of mistakes depends on how good
an action is. In our context, this means for a perturbed speaker strategy S̃ that
the speaker chooses an answer which is just second to an optimal answer with
probability at most ε times the probability of an optimal answer, and an answer
that is third to an optimal answers with a probability ε times the probability of
an second best answer, etc. For both criteria, the probability and the kind of
mistakes can be inferred from theory internal parameters, as e.g. from the set
of available hearer actions, their expected utilities, and the speaker’s set of sig-
nals. In linguistic pragmatics, in contrast to other applications of game theory,
the phenomena are very close to the cognitive level. Hence a strong interaction
between the behavioural level, represented by game theory, and the cognitive
level is to be expected. We introduce expected noise models as a framework to
introduce noise into the game theoretic models which is controlled by external
causes. The representation of noise in expected noise models is therefore very
little restricted. In other respects, we simplify the model by only considering
perturbations of the speaker’s strategy. This means, we always assume that the
hearer finds his best response with certainty.

In order to motivate the following definition, assume that an interpreted
signalling game σ is given. Assume further that the speaker follows strategy S.
Then S( . |σ) will assign non–zero probability to certain forms F ∈F . They
may form a proper sub–set O of F . We may call Sε a noisy ε-approximation
of S if ∑F |S(F |σ)− Sε(F |σ)| = ε . Then, for Sε( . |σ) we can also collect all
forms to which Sε assign non–zero probability in a set N ε . The exact value
of ε does not matter to us; hence, we abstract away from it and just keep the
set of forms to which the Sε assign non–zero probability. We assume that it
is the same set for all ε . We call this set a noise set. Now, as we want to
capture by these noise sets the perturbations resulting from cognitive sources,
these sets may vary from support problem to support problem as the speaker’s
state varies from support problem to support problem. We therefore represent
the perturbations by a function which maps S to sets Nσ ⊆F . This motivates
the following definition:

Definition 9.1 (EN model) Let S be a set of interpreted support problems.
Assume that the support problems 〈Ω,PS,PH,F ,A ,u,c,J . K〉 may only differ
with respect to PS. A model with expected noise, or EN model, is a triple
〈S ,(Oσ )σ∈S ,(Nσ )σ∈S 〉 for which

1. (Oσ )σ∈S is a sequence of sets Oσ ⊆F .
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2. (Nσ )σ∈S is a sequence of sets Nσ ⊆F .

In the following, we write 〈S ,Oσ ,Nσ 〉 instead of 〈S ,(Oσ )σ∈S ,(Nσ )σ∈S 〉.
In our applications, Oσ is the set Opσ of optimal answers of the canonical solu-
tion to the support problem σ .

If the hearer cannot distinguish between the elements of S , then learning
that the speaker produced a possibly noisy form F only provides him with the
information that F is an element of the union of the Nσ . Hence, we introduce
the set:

N :=
⋃
σ

Nσ . (9.63)

It can be easily seen that the addition of efficient clarification requests in
itself has no effect on the canonical solution. This changes when we consider
noisy communication. We will see that the addition of noise and the availability
of efficient clarification requests gives rise to a transformation (S̄, H̄) of the
canonical solution (S,H) which is Pareto dominating all other strategies. In
addition, the transformed solution is robust against the noise characterised by
an EN model. A central role will be played by the sets B̃(A) and FEn. B̃(A) is
the set of all actions a which are optimal for all support problems σ for which
A can occur as a noisy form:

B̃(A) :=
⋂
{B(Kσ ) |A ∈Nσ} with Kσ = {v |Pσ

S (v) > 0}. (9.64)

FEn then collects all A ∈F for which B̃(A) is not empty:

FEn := {A ∈N | B̃(A) 6= /0}. (9.65)

We illustrate the meaning of these sets by a little example. Assume there are
two support problems σ and σ ′. Assume further that actions a and b are optimal
in σ , and actions b and c are optimal in σ ′. Being optimal has to be understood
relative to the speaker’s expectations Pσ

S ; hence, we mean by saying that a and
b are optimal in σ that EUσ

S (a) = EUσ
S (b) = max{EUσ

S (a′) | a′ ∈ A }, and
therefore being optimal is equivalent to being an element of B(Kσ ). Hence, it
is B(Kσ ) = {a,b} and B(Kσ ′) = {b,c}. Let us now assume that Sε(A|σ) > 0
and Sε(A|σ ′) > 0. What is the best response for the hearer? If he chooses a, then
this may be sub–optimal as he cannot be sure that the actual support problem is
really σ . The same problem arises with c. But if he chooses b, then he is save
as b is an optimal action in both σ and σ ′. Choosing b is also better than asking
a clarification request as this comes with additional (nominal) costs. Now, in
contrast, consider a situation in which actions a and b are optimal in σ , and
actions c and d are optimal in σ ′. If again Sε(A|σ) > 0 and Sε(A|σ ′) > 0, then
it is now better to ask a clarification request as there is no best choice which
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belongs to all B(Kσ ). Hence, we see that if FEn 6= /0, then the hearer can safely
choose an act in FEn, otherwise he should react with a clarification request.

As mentioned before, Oσ and Nσ are representing speaker strategies S
and their perturbed forms Sε . The following definition makes explicit in which
sense EN models represent these strategies:

Definition 9.2 Let En = 〈S ,Oσ ,Nσ 〉 be an EN model with S a set of support
problems σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉. For X ⊆F , we denote by ∆∗X the set
of all completely mixed strategies over X, i.e. ∆∗X is the set of all probability
distributions P over X for which P(x) > 0 iff x ∈ X. Then, we say that:

1. En represents a strategy S iff for all σ ∈S S( . |σ) ∈ ∆∗Oσ
;

2. En represents a noise strategy Sε iff for all σ ∈S Sε( . |σ) ∈ ∆∗Nσ
;

3. an arbitrary strategy S̃ is an En strategy iff for all σ ∈S

S̃( . |σ) ∈ ∆
En
σ := ∆

∗
Oσ
∪∆
∗
Nσ
∪∆
∗
FEn

. (9.66)

Expected noise models are extensions of interpreted support problems.
They represent the subjective level. Signalling games model the objective level,
especially, objective success of communication is only definable for signalling
games. Hence, in the following, we have again to consider the relation between
signalling games and expected noise models. We repeat the definitions of the
most important relations:

Definition 9.3 A signalling game G supports an EN model En = 〈S ,Oσ ,Nσ 〉
iff G supports S . By Definition 4.4, this means that G = 〈Ω,Θ,P, p,F ,A ,u〉
is such that Θ = S and for all σ = 〈Ω,PS,PH,F ,A ,u,c,J . K〉 it is µΘ(σ) =
∑v P(v) p(σ |v) > 0. We say that G fully supports En iff all Pσ

S are fully reliable;
it reliably supports En iff all Pσ

S are reliable; and it weakly supports En iff all
Pσ

S are truth preserving.

9.1 The canonical solution

We consider situations in which the speaker may follow some perturbed strat-
egy Sε , and the hearer a strategy H. There may exist a support problem σ for
which the speaker choose an answer A with probability greater zero to which
the hearer may respond with a sub-optimal action if he follows H. Assume that
this perturbed strategy Sε is known to the hearer, and that he is in a situation in
which he receives answer A. How does the hearer have to change his strategy
H( . |A) in order to achieve maximal expected payoff? We introduce an oper-
ation which changes the hearer’s response to A but leaves it unchanged for all
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other answers:

HA
X (a|B) :=

{
H(a|B) if B 6= A,
|X |−1 if B = A∧a ∈ X . (9.67)

This operation turns strategy H into a strategy HA
X which is identical to H for

all answers except A, and for A it chooses each of the elements of X with equal
probability. The strategy HA

c defined in (8.61) is the special case in which the
old response to A is replaced by the clarification request c. We also consider the
case in which the old response to A is replaced by B̃(A). We write:

HA
c := HA

{c} and HA := HA
B̃(A). (9.68)

It is quite intuitive that the hearer can optimise his strategy by changing H( . |A)
to HA

c if B̃(A) = /0, and by changing it to HA if B̃(A) 6= /0. If (S,H) is the
canonical solution to S , then, by applying these operations systematically, we
arrive at a new canonical solution to the expected noise model. Its definition is
provided in (9.69) and (9.71).

Definition 9.4 (Canonical Solution) Let S be a set of support problems with
canonical solution (S,H). Let En = 〈S ,Oσ ,Nσ 〉 be an expected noise model
which represents S. Then, we define the canonical extension (S̄, H̄) to En as
follows:

H̄( . |A) =
{

HA, if A ∈FEn,
HA

c if A 6∈FEn

. (9.69)

For the speaker let c̄σ := min{c(A) |A ∈Nσ ∩FEn}, and:

OpEn
σ := {A ∈Nσ ∩FEn | c(A) = c̄σ}. (9.70)

Then, S̄ is defined by:

S̄(A|σ) =
{
|OpEn

σ |−1 if A ∈ OpEn
σ

0 otherwise . (9.71)

We can show an equivalent to Lemma 2.3:

Lemma 9.5 Let S be a set of support problems with canonical solution (S,H).
Let G be a signalling game which supports S . Let, furthermore, En be an
expected noise model which represents S. Then, the canonical solution (S̄, H̄)
always exists, and it is a Bayesian perfect equilibrium of G . In addition, if we
treat nominal costs as zero, then (S̄, H̄) is Pareto dominating all other strategy
pairs.

This is the best result we can hope to achieve. We cannot exclude the pos-
sibility that there are signalling strategies which are more efficient than (S̄, H̄).
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For example, we may conceive an artificial signalling strategy for which the
speaker says ‘A’ and snips with his fingers whenever he wants to say that there
is a garage round the corner, and behaves exactly as if following S̄ in all other
situations. Then, this strategy is arguably more cost efficient than S̄. As our
framework does not exclude such artificial signalling strategies, we cannot in
general prove that (S̄, H̄) is Pareto dominating all other strategies.

9.2 Implikatures in EN models

We now consider the implicatures of an ENmodel En = 〈S ,Oσ ,Nσ 〉. As Oσ

and Nσ are only there in order to represent strategies and their perturbations,
they do not change the set of signalling games which support S . As impli-
catures are an objective notion in our framework, and the objective level is
described by signalling games, it follows that the implicatures of a signal F
relative to s strategy S and an EN model En are the same as its implicatures
relative to S and S . Hence, we set for F ∈F for which ∃σ ∈S S(F |σ) > 0,
and R⊆Ω:

〈En,S,H〉 |= F +> R ⇐⇒ 〈S ,S,H〉 |= F +> R. (9.72)

By Definition 5.4, this is equivalent to:

〈En,S,H〉 |= F +> R ⇐⇒ ∀G ∈ Supp(S ) 〈G ,S,H〉 |= F +> R. (9.73)

Here, Supp(S ) is the set of all signalling games G which support S .
Let En0, En1 be two EN models which represent the same strategy pair

(S,H). Hence, S En0 = S En1, and for each σ ∈ S Eni it holds that OEni
σ =

{F |S(F |σ) > 0}. Then, Lemma 5.3 implies that:

〈En0,S,H〉 |= F +> R ⇐⇒ 〈En1,S,H〉 |= F +> R. (9.74)

If (S̄, H̄) is the canonical solution to En, we arrive with (5.43) at:〈
En, S̄, H̄

〉
|= F +> R ⇐⇒ ∀σ ∈S (F ∈ OpEn

σ ⇒ Pσ
S (R) = 1). (9.75)

Finally, we note a consequence of the definition for perturbed strategies
Sε . Let En = 〈S ,Oσ ,Nσ 〉 be an EN model which represents S and Sε . Let H
be an arbitrary hearer strategy. If F is such that ∃σ Sε(F |σ) > 0 and R ⊆ Ω,
then we find again with (5.43) that:

〈En,S,H〉 |= F +> R ⇐⇒ ∀σ ∈S (F ∈ Oσ ⇒ Pσ
S (R) = 1), (9.76)

and

〈En,Sε ,H〉 |= F +> R ⇐⇒ ∀σ ∈S (F ∈Nσ ⇒ Pσ
S (R) = 1). (9.77)
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10 On the equilibrium properties of the canonical solution

Lemma 9.5 states that the best strategy pair that speaker and hearer can adopt in
EN models is the canonical strategy pair defined in Section 9. More precisely,
it states that the canonical strategy is a Bayesian perfect equilibrium, and, if
we ignore nominal costs, it is even Pareto dominating all other strategies. The
hearer’s part of the canonical strategy is defined in (9.67), which in turn can
be defined in terms of HA

c . The goal of this section is to prove Lemma 9.5. In
addition, it contains some more fine grained characterisations of the canonical
strategy.

Let G = 〈Ω,Θ,P, p,F ,A ,u〉 be a signalling game which represents S ,
and let En = 〈S ,Oσ ,Nσ 〉 be an EN model which represents a strategy S and
the ε-approximations Sε . Following our procedure in Section 8, we consider
the following set:

Zε
H(A) := {〈v,σ〉 |P(v) p(σ |v)Sε(A|σ) > 0∧∃a 6∈B(σ)H(a|A) > 0}. (10.78)

For ε = 0, this corresponds to the set Z(A) defined in (8.60). Zε
H(A) is the set of

all pairs of worlds v and support problems σ which have non–zero probability,
for which the speaker answers A with non–zero probability, and for which H
may choose a suboptimal action. In Proposition 8.2, we have shown that the
hearer can improve if he reacts with a clarification request. Now we see that
he can improve even more if he distinguishes between answers A which are
elements of FEn and answers A which are not elements of FEn. We first show
how B̃(A) and Zε

H(A) are related to each other:

Proposition 10.1 Let G be a signalling game which fully supports the EN model
En = 〈S ,Oσ ,Nσ 〉. Assume that En represents S and the ε-approximations Sε .
Let A ∈N . Then:

B̃(A) = /0⇔∀H (H(c|A) < 1⇒ Zε
H(A) 6= /0). (10.79)

Proof: We first prove “⇒”: Assume that B̃(A) = /0. Then, by definition:

∀a ∈A \{c}∃σ ,σ ′ : A ∈Nσ ∩N (σ ′)∧a 6∈B(Kσ )∩B(Kσ ′).

As Pσ
S is fully reliable for each σ ∈ S , it follows that B(Kσ ) = B(σ) and

B(Kσ ′) = B(σ ′). Let a ∈ A \ {c}, and let H be any hearer strategy with
H(a|A) > 0. Then, there exists σ such that A∈Nσ and a 6∈B(σ). As En is sup-
ported by G and Sε represented by En, it follows that P(v) p(σ |v)Sε(A|σ) > 0;
hence we can find a v such that 〈v,σ〉 ∈ Zε

H(A) and an a with H(a|A) > 0∧a 6∈
B(σ). Therefore Zε

H(A) 6= /0.
“⇐”: Assume that B̃(A) 6= /0. Let a∈ B̃(A) and set H(a|A) = 1. Assume

that P(v) p(σ |v)Sε(A|σ) > 0. As Pσ
S is fully reliable for each σ ∈S , it follows
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by definition of B̃(A) that a ∈B(σ). Hence, 〈v,σ〉 6∈ Zε
H(A). As v and σ are

arbitrary, it follows that Zε
H(A) = /0.

This shows how we can improve over Proposition 8.2: Only if B(A) = /0
the hearer reacts with a clarification request, else he chooses an act from B(A).
B(A) = /0 is equivalent to A ∈FEn. The next proposition tells us how expected
utilities behave if the hearer changes his strategy from H( . |A) to HA

X .

Proposition 10.2 Let G be a signalling game which fully supports the EN model
En = 〈S ,Oσ ,Nσ 〉. Assume that En represents S and the ε-approximations
Sε . Let A ∈N . Let EH be the hearer’s expected utility if the speaker follows
strategy S, E ε

H be the hearer’s expected utility if the speaker follows strategy
Sε , and E ∼H be the hearer’s expected utility if the speaker follows some other
strategy S̃. All the expected utilities are defined relative to the probabilities in
G . Let Mσ = maxa∈A \{c}ES(a|σ), and let µ be as in (6.52). In the following
equations, let X ⊆A be such that c 6∈ X. Then:

1. EH(H|A) = EH(HA
X |A) = ∑σ µ(σ |A)Mσ − c(A) for X ⊆ B̃(A),

2. E ε
H (HA

X |A) < E ε
H (HA|A) = ∑σ µε(σ |A)Mσ − c(A) for X \ B̃(A) 6= /0,

3. Let S̃ be given with S̃(FEn|σ) = 1 for all σ , and let X \ B̃(A) 6= /0, then

E ∼H (HA
X |A) < E ∼H (HA|A) = ∑

σ

µ(σ |A)Mσ − c(A).

Proof: We first show that EH(H|A) = EH(HA
X |A) for X ⊆ B̃(A): By (6.53)

EH(H|A) = ∑σ µ(σ |A)∑a H(a|A) ES(a|σ)− c(A); from (6.57) it follows that
H(a|A) > 0⇒ ES(a|σ) = Mσ ; hence EH(H|A) = ∑σ µ(σ |A)Mσ −c(A); as X ⊆
B̃(A), it follows again with (6.53) and (6.57) that

EH(HA
X |A) = ∑

σ

µ(σ |A) ∑
a∈X

HA
X (a|A)ES(a|σ)−c(A) = ∑

σ

µ(σ |A)Mσ −c(A).

Next, we turn to E ε
H (HA

X |A) < E ε
H (HA|A) for all X with B̃(A) $ X : By

(6.53), E ε
H (HA

X |A) = ∑σ µε(σ |A)∑a HA
X (a|A)ES(a|σ)−c(A); we can divide ∑σ

into the sum over the set M0 = {σ |HA
X (B(σ)|A) = 1} plus the sum over the

set M1 = {σ |HA
X (B(σ)|A) < 1}; as B̃(A) $ X , the second set is not empty; as

HA(a|A) > 0⇒ a ∈ B̃(A), it follows for M1 that

∑
M1

µ
ε(σ |A)∑

a
HA

X (a|A)ES(a|σ)− c(A) < ∑
M1

µ
ε(σ |A)Mσ − c(A) =

= ∑
M1

µ
ε(σ |A)∑

a
HA(a|A)ES(a|σ)− c(A).

By (6.57) it follows that equality holds if we replace M1 by M0. This proves the
claim.
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Finally, the proof of E ∼H (HA
X |A) < E ∼H (HA|A) = ∑σ µ(σ |A)Mσ − c(A) is

almost identical to the previous case.
In order to improve the readability of formulas, we use the abbreviation

NC(s) for expressing the fact that a speaker strategy s is not optimal but dif-
fers from an optimal strategy s′ only by a positive term with nominal costs; in
addition, these nominal costs can only be reduced by a change of the speaker
strategy s, not by a change of the hearer strategy. That is, if we write EU(s′|h) =
EU(s|h)−NC(s), we mean that EU(s′|h) < EU(s|h) such that first EU(s′|h)−
EU(s|h) is nominal, and second there is no strategy h′ for which EU(s|h′) >
EU(s|h). We find:

Proposition 10.3 Let S be a set of support problems with canonical solution
(S,H). Let G be a signalling game which supports S . Let, furthermore, En =
〈S ,Oσ ,Nσ 〉 be an expected noise model which represents S, and let (S̄, H̄) be
its canonical solution. Then:

1. EU(S̄|H̄) = ∑σ µΘ(σ) (Mσ −∑A S̄(A|σ) c(A));

2. EU(Sε |H̄) = EU(S̄|H̄)−NC(Sε).

If for all σ ∈S Oσ ⊆FEn, then

3. EU(S|H) = EU(S, H̄) = EU(S̄|H̄)−NC(S).

Furthermore, if S̃ is such that ∃σ S̃(FEn|σ) < 1, then

4. EU(S̃, H̄) = EU(S̄|H̄)−NC(S̃)

Proof: 1) By definition, S̄(A|σ) > 0 implies H̄(a|A) > 0⇒ a ∈B(σ). Then,
(6.55) and (2.1) imply that EU(S̄|H̄) = ∑v P(v)∑σ p(σ |v)∑A S̄(A|σ) (Mσ −
c(A)), which equals ∑σ µΘ(σ) (Mσ −∑A S̄(A|σ) c(A)).

2) Let µε(A) := ∑v P(v)∑σ p(σ |v)Sε(A|σ). If µε(A|σ) > 0 and B̃(A) =
/0, then H̄(c|A) = 1, i.e. the hearer will react to A with a clarification request c.
If µε(A|σ) > 0 and B̃(A) 6= /0, then Sε will produce higher costs than S̄, iff c(A)
is more costly than c̄σ . Hence, with µΘ(σ) = ∑v P(v) p(σ |v), we arrive at:

EU(Sε |H̄) = EU(S̄|H̄)−
(

c(c) µ
ε({A | B̃(A) = /0})+ (10.80)

+∑
σ

µΘ(σ)∑
A

Sε(A|σ) (c(A)− c̄σ )
)

= EU(S̄|H̄)−NC(Sε).

This proves the second claim.
3) The first equation is trivially true. The second equation follows simi-

larly to 2) as S(A|σ) > 0 implies c(A)≥ c̄σ ; hence:

EU(S|H̄) = EU(S̄|H̄)−∑
σ

µ(σ)∑
A

S(A|σ) (c(A)− c̄σ ). (10.81)
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This again proves the claim.
4) Assume that ∃σ S̃(FEn|σ) < 1. We split S into M0 = {σ | S̃(FEn|σ) =

1} and M1 = {σ | S̃(FEn|σ) < 1}. Then, for each σ ∈ M1, we split F into
Fσ

0 = {A ∈ FEn | S̃(A|σ) > 0)} and Fσ
0 = {A ∈ F \FEn | S̃(A|σ) > 0)} . As

∃σ S̃(FEn|σ) < 1, it follows that ∃σ S̃(Fσ
0 |σ) > 0. Then, let S̃′ be the strategy

which results from replacing each A ∈ Fσ
0 by a B ∈Nσ ∩FEn. Then, clearly,

EU(S̃|H̄) < EU(S̃′|H̄), and by definition EU(S̃′|H̄) = EU(S̄|H̄)−NC(S̃′). As
the difference between EU(S̃|H̄) and EU(S̃′|H̄) is only nominal, it also follows
that EU(S̃|H̄) = EU(S̄|H̄)−NC(S̃).

With these preparations, we can finally show:

Proof of Lemma 9.5: From the third claim of Prop. 10.2, it follows
that the hearer has no better strategy against S̄ than H̄, in particular, H̄ satisfies
the Bayesian condition. From the fourth claim of Prop. 10.3 it follows that the
speaker prefers strategies S̃ with S̃(FEn|σ) = 1 over strategies S̃ with S̃(FEn|σ) <
1. By definition, strategies S̃ which satisfy S̃(FEn|σ) = 1 cannot be better than S̄
against H̄. Hence, it follows that (S̄, H̄) is a Bayesian perfect equilibrium of G .
From the first claim of Prop. 10.3, it immediately follows that (S̄, H̄) is Pareto
dominating all other strategy pairs if nominal costs are treated as zero.

11 Nominality

In this section we supplement a precise definition of nominal costs. As the
technical details are of minor interest to the purposes of the present paper, we
present only the bare essentials.

Definition 11.1 (Nominality) Let u be a function which takes arguments a =
〈a1, . . . ,an〉. Let u1 and u2 be two functions for which u(a) = u1(a) + u2(a).
By saying that u2 is nominal with respect to u, we say that for any continuous
function f and arguments a,b the inequality f (u(a))≤ f (u(b)) means that

lim
k→0+

sgn
(

f (u1(b)+ k u2(b))− f (u1(a)+ k u2(a))
)
≥ 0. (11.82)

In this formula, k→ 0+ means that we only consider sequences of k > 0 which
converge to 0. The signum function sgn is defined as follows:

sgn(x) :=

{
1 if x > 0
0 if x = 0
−1 if x < 0

.

One should keep in mind that there are continuous f for which the limit in
(11.82) is not defined. But it is always defined for constant, linear, or monotonic
continuous functions f . For linear functions, (11.82) is equivalent to:

f (u1(a)) < f (u1(b))∨( f (u1(a)) = f (u1(b))∧ f (u2(a)) < f (u2(b))). (11.83)
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As example, we consider the speaker’s expected utility of uttering F given
a hearer strategy H for a support problem 〈Ω,PS,PH,F ,A ,u,c,J . K〉. The utility
function u is of the form u(v,F,a) = u(v,a)+ c(F) with nominal c. Hence, we
set u1(a,F,a) = u(v,a) and u2(a,F,a) =−c(F). The speaker’s expected utility
is defined as:

EUS(F) = ∑
v∈Ω

PS(v) ∑
a∈B(F)

H(a|F)u(v,F,a). (11.84)

As EUS is linear, we find:

EUk
S (F) := EU0

S (F)− k c(F), (11.85)

Hence, the nominality of c entails that for all F0,F1 ∈F :

EUS(F0)≤ EUS(F1) :⇔ lim
k→0+

sgn
(

EUk
S (F1)−EUk

S (F0)
)
≥ 0. (11.86)

Clearly, it follows that

EU0
S (F0) < EU0

S (F1)⇒ EUS(F0) < EUS(F1). (11.87)

For clarification requests we have to generalise the definition slightly. Ex-
pected utilities with clarification requests divide into a non–nominal term which
depends on the speakers signal A, and a nominal term which is the sum of the
costs for uttering A and the costs due to the clarification request c. Hence, we
generalise (11.86) as follows: For finite sets X ⊆ dom c we set

c(X) := ∑
F∈X

c(F), and EUk
S (Fi,X) = EUk

S (Fi)− k c(X). (11.88)

Then, EUS(F0,X0)≤ EUS(F1,X1) iff:

lim
k→0+

sgn
(

EUk
S (F1,X1)−EUk

S (F0,X0)
)
≥ 0. (11.89)

For example, F0 and F1 may be two possible utterances, and X0 = {c} and
X1 = /0. It follows by definition that

EU0
S (F0) < EU0

S (F1)⇒ EUS(F0,X0) < EUS(F1,X1). (11.90)
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editors, Game Theory and Pragmatics, pages 195–214. Palgrave Macmillan, Basingstoke.

Benz, A. (2007). On Relevance Scale Approaches. In Puig-Waldmller, E., editor, Proceedings
of the Sinn und Bedeutung 11, pages 91–105.

reinhard
Typewritten Text
200



Benz, A. (2008). How to Set Up Normal Optimal Answer Models. Ms, ZAS, Berlin.

Benz, A. and van Rooij, R. (2007). Optimal assertions and what they implicate: a uniform game
theoretic approach. Topoi - an International Review of Philosophy, 27(1):63–78.

Franke, M. (2009). Signal to Act: Game Theory in Pragmatics. PhD thesis, Universiteit van
Amsterdam.

Grice, H. P. (1957). Meaning. Philosophical Review, 66:377–388.

Grice, H. P. (1989). Studies in the Way of Words. Harvard University Press, Cambridge MA.

Groenendijk, J. and Stockhof, M. (1991). Dynamic predicate logic. Linguistics & Philosophy,
14:39–100.
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