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To some, the relation between bidirectional optimality theory and game theory seems obvious:
strong bidirectional optimality corresponds to Nash equilibrium in a strategic game (Dekker and
van Rooij 2000). But in the domain of pragmatics this formally sound parallel is conceptually
inadequate: the sequence of utterance and its interpretation cannot be modelled reasonably as a
strategic game, because this would mean that speakers choose formulations independently of a
meaning that they want to express, and that hearers choose an interpretation irrespective of an
utterance that they have observed. Clearly, the sequence of utterance and interpretation requires
a dynamic game model. One such model, and one that is widely studied and of manageable
complexity, is a signaling game. This paper is therefore concerned with an epistemic interpre-
tation of bidirectional optimality, both strong and weak, in terms of beliefs and strategies of
players in a signaling game. In particular, I suggest that strong optimality may be regarded as
a process of internal self-monitoring and that weak optimality corresponds to an iterated pro-
cess of such self-monitoring. This latter process can be derived by assuming that agents act
rationally to (possibly partial) beliefs in a self-monitoring opponent.

1 Bidirectional Optimality in Pragmatics

Optimality theory () has its origin in phonology (Prince and Smolensky 1997),
but has been readily applied to other linguistic subdisciplines such as syntax,
semantics (Hendriks and de Hoop 2001), and pragmatics (c.f. the contributions
in Blutner and Zeevat 2004). Abstractly speaking,  is a model of how input
and output representations are associated with each other based on grammatical
preferences on input-output matching. More concretely, for models of prag-
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matic interpretation we are interested in how a set M of (input) forms and a set
T of (output) meanings are matched by language users in production and inter-
pretation. An - 〈Gen,"〉 is then just a pair 〈Gen,"〉 consisting of a
 Gen ⊆ M × T that gives us the initially possible form-meaning pairs
and an ordering " on elements of Gen that measures how well the elements of
the generator satisfy certain standards of grammaticality, normality, efficiency,
or whatever might be at stake for a particular explanation of pragmatic language
use.1

Based on the ordering ", an -system specifies the preferred input-output
associations in several ways. Since " is an ordering on a set of input-output
pairs, we can either take a production perspective and ask which output is best
when we fix the input dimension, or we can take a comprehension perspective
and ask which input is best when we fix the output dimension. The former pro-
duction perspective is taken by -syntax, the latter comprehension perspective
is taken by -semantics. Abstractly, we can define the set of 
  as follows:

syn =
{〈m, t〉 ∈ Gen | ¬∃t′ :

〈
m, t′
〉 ∈ Gen ∧ 〈m, t′〉 * 〈m, t〉}

sem =
{〈m, t〉 ∈ Gen | ¬∃m′ :

〈
m′, t
〉 ∈ Gen ∧ 〈m′, t〉 * 〈m, t〉} .

Optimization along both dimensions at the same time is also possible, of course.
This is   and it comes in two varieties, a strong notion
and a weak notion (Blutner 1998, 2000). We say that an input-output pair is
  iff it is unidirectionally optimal for both production and com-
prehension:

str = syn ∩ sem

is the set of all strongly optimal pairs. Adopting Jäger’s reformulation of Blut-
ner’s original definition (Jäger 2002), we say that a pair 〈m, t〉 is 
iff

(i) there is no weakly optimal 〈m, t′〉 such that 〈m, t′〉 * 〈m, t〉; and

(ii) there is no weakly optimal 〈m′, t〉 such that 〈m′, t〉 * 〈m, t〉;

and we denote the set of all weakly optimal pairs with weak. It is obvious
1 Normally, the ordering " would be derived from a set of ranked constraints, but for the

purposes of this paper we can safely abstract from that.
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that all strongly optimal pairs are also weakly optimal, but it may be the case
that there are weakly optimal pairs which are not strongly optimal.

How should we interpret the various optimality notions for applications to
linguistic pragmatics? What exactly does it mean when an -system selects a
given form-meaning pair as weakly optimal but not strongly optimal, or as uni-
directionally optimal but not strongly optimal? These are the general questions
that this paper seeks to address.

Proponents of -pragmatics are not unanimous about this issue. Some
propose to think of unidirectional and strong optimality as measures of online
pragmatic competence, but reject the notion that weak optimality has anything
to do with actual pragmatic reasoning (Blutner and Zeevat 2004, 2008). Weak
optimality is rather viewed from a diachronic, evolutionary perspective as giv-
ing the direction into which semantic meaning of expressions will most likely
shift over time by pragmatic pressures.

Opposed to this view, others treat also weak optimality as a model of
pragmatic reasoning competence. Under this interpretation different notions
of optimality express different levels of perspective taking: whereas unidirec-
tional optimization does not require to take the interlocutor’s perspective into
account, bidirectional optimization does (cf. Hendriks et al. 2007, chapter 5).
More strongly even, optimality theory in pragmatics is often related to theory
of mind () reasoning (Premack and Woodruff 1978): unidirectional opti-
mization is taken to involve no  reasoning (or zero-order ), strong opti-
mization would correspond to first-order, and weak optimization would involve
second-order  reasoning (see, for instance, Flobbe et al. 2008, p. 424).

Given the controversy about its conceptual interpretation, what would be
required is, in a manner of speaking, an interpretation of the basic notions of
optimality theory that clarifies (some of) its intended use in pragmatic applica-
tions. For this purpose, it would be most welcome to supply in particular an
epistemic interpretation of , i.e., an interpretation that links ’s basic notions
to more familiar features of human cognition such as beliefs and preferences.
Comparison to a related game theoretic model can help achieve this, especially
when we focus on an epistemic characterization of player behavior. This is what
this paper tries to achieve by linking pragmatic -systems to particular kinds of
signaling games and by linking notions of optimality to particular player types
of varying degree of sophistication.
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The paper is structured as follows. I will first review critically the most
commonly adopted characterization of -pragmatics in terms of strategic games
in section 2. It will transpire that a strategic game is inadequate to capture the
sequential nature of speech and its uptake and interpretation. Section 3 explores
a different characterization of  in terms of signaling games, and section XYZ
finally links optimality notions to iterated best responses.

2 BOT and Strategic Games

Bidirectional optimization is simultaneous optimization of both the production
and the comprehension perspective. At first glance, this looks very similar to
an equilibrium state in which the speaker’s and the hearer’s preferences are
balanced. And, indeed, there is a prima facie very plausible link between 
and game theory. Dekker and van Rooij (2000) (henceforth D&vR) show that
the notion of strong optimality corresponds one-to-one to the notion of Nash
equilibrium in an optimality game.2 An optimality game is a straightforward
translation of an -system into a strategic game. D&vR continue to show that
weak optimality corresponds with the outcome of a process that we could call
iterated Nash-selection. Let’s first look at the analysis of D&vR in more detail
and then reflect critically.

2.1 Strong Optimality as Nash Equilibrium

Formally a strategic game is a triple 〈N, (A)i∈N , (")i∈N〉 where N is a set of play-
ers, Ai are the actions available to player i and "i is player i’s preference relation
over action profiles × j∈NAj, i.e., possible outcomes of the game. A Nash equi-
librium of a strategic game is an action profile a∗ such that for all i ∈ N there is
no ai ∈ Ai for which:3

(a∗−i, ai) *i a∗.

In words, a Nash equilibrium is an action profile which no player would like to
deviate from given that all other players conform.

Take an -system with forms M, meanings T —assuming for simplicity

2 D&vR use the term “interpretation game” for what I call “optimality game.” I would like to
reserve the former term for a particular kind of signaling game to be introduced later.

3 Here, (a∗−i, ai) is the action profile which is derived from a∗ by replacing player i’s action in
a∗ with ai.
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that Gen = M × T— and some ordering " over form-meaning pairs. An -
 , as defined by D&vR, is a strategic game between a speaker S
and a hearer H such that the speaker selects a form, AS = M, the hearer se-
lects a meaning, AH = T , and the players’ preferences are just equated with the
ordering of the -system, "S="H=".

An action profile 〈m, t〉 is a Nash equilibrium of an optimality game iff

(i) there is no m′ ∈ M such that 〈m′, t〉 *S 〈m, t〉; and

(ii) there is no t′ ∈ T such that 〈m, t′〉 *H 〈m, t〉.

But since "S="H=" this is the case just when 〈m, t〉 ∈ str. Consequently,
every Nash equilibrium of an optimality game is a strongly optimal pair in the
corresponding -system, and every strongly optimal pair of an -system is
a Nash equilibrium of the corresponding optimality game. D&vR’s result in
slogan form: strong optimality is Nash equilibrium (in an optimality game).

2.2 Weak Optimality as Iterated Nash Selection

In order to understand D&vR’s characterization of weak optimality, we should
first notice that the recursive definition of weak optimality given above is rather
cumbersome to apply. In practice, therefore, most often weakly optimal pairs
are computed via a manageable algorithm which iteratively computes optimal
pairs. D&vR’s characterization of weak optimality is inspired by this iterative
computation process, so that we should first revisit the -algorithm.

2.2.1 The -Algorithm

The -algorithm, which is due to Jäger (2002) and given in figure 1, itera-
tively computes three disjoint sets of form-meaning pairs (Jäger 2002):

(i) the set Pooln of form-meaning pairs still in competition for optimality after
n rounds of iteration;

(ii) the set Optn of form-meaning pairs that have been identified as optimal
after round n;

(iii) the set Blon of form-meaning pairs that are blocked by an optimal pair and
therefore removed from the pool.
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Pool0 ← Gen
Opt0 ← ∅
Blo0 ← ∅
n← 0
while Pooln ! ∅ do

Optn+1 ← Optn ∪ {〈m, t〉 ∈ Pooln |
¬∃ 〈m′, t〉 ∈ Pooln 〈m′, t〉 > 〈m, t〉 ∧
¬∃ 〈m, t′〉 ∈ Pooln 〈m, t′〉 > 〈m, t〉}

Blon+1 ← Blon ∪ {〈m, t〉 ∈ Pooln |
∃ 〈m′, t〉 ∈ Optn+1 〈m′, t〉 > 〈m, t〉 ∨∃ 〈m, t′〉 ∈ Optn+1 〈m, t′〉 > 〈m, t〉}

Pooln+1 ← Pool0 \ (Optn+1 ∪ Blon+1)
n← n + 1

end while

Figure 1: The -algorithm

Initially, Pool0 is the set Gen and there are no optimal or blocked forms. The
algorithm then iteratively computes optimal pairs based on a comparison of
forms left in the pool and removes optimal and blocked pairs from the pool
until every form-meaning pair is removed from the pool as either optimal or
blocked. We could think of the pool at round n as a reduced -system. The -
algorithm thus repeatedly checks for strong optimality in ever more reduced
-systems and thus selects all and only weakly optimal pairs (see Jäger 2002;
Franke 2009, for more formal detail).

2.2.2 Iterated Nash Selection

The main idea of D&vR’s characterization of weak optimality is now this.
Firstly, we saw that the -algorithm iteratively computes strongly optimal
pairs, based on a shrinking pool of candidate pairs. Secondly, we also saw
that strong optimality can be likened to Nash equilibrium in optimality games.
Hence, the workings of the -algorithm can be recast in game theoretic terms
as a process of iteratively removing action profiles from competition for Nash
equilibrium that are, in a way of speaking, dominated by a Nash equilibrium.

In order to make this idea more precise, D&vR allow strategic games to
have partial preferences. For games with partial preferences, not every defini-
tion of Nash equilibrium will do, but the one given above applies. The process
of  N- on a strategic game I0 = 〈N, (A)i∈N , ("0)i∈N〉 is de-
fined inductively as follows: let NEn be the set of Nash equilibria of game In;
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In+1 is derived from In by restricting the preferences "n,i to:

"n+1,i=
{〈x, y〉 ∈"n,i | ¬∃z ∈ NEn : z *n,i x

}
.

If for some index n we have In = In+1, we consider the process to be terminated,
and call NEn the outcome of the process of iterated Nash-selection. D&vR
show that this process corresponds to the -algorithm if applied to optimality
games: if I is the optimality game corresponding to an -system, then the out-
come of iterated Nash-selection on I contains all and only the weakly optimal
pairs of the -system.

2.3 Critique

The characterization of strongly optimal pairs as Nash equilibria in an optimal-
ity game has some prima facie plausibility and seems unanimously endorsed as
the link between  and game theory. But on closer look the suggested parallel
turns out not to be very sensible. To model communication as a strategic game
is to assume that speakers choose formulations independently of a meaning that
they want to express, and that hearers choose an interpretation irrespective of an
utterance that they have observed. But this is clearly inadequate for pragmatic
explanations. Obviously, speakers choose forms conditional on a meaning to be
expressed and hearers choose interpretations of a given form not interpretations
per se.

Here is a concrete example to make my argument more tangible. Let us
consider the -system that Hendriks and Spenader (2005) use in order to ex-
plain the preferred interpretations of sentences (1) and (2).

(1) Bert washed himself.

(2) Bert washed him.

Clearly, for (most) adult speakers of English the sentence (1) has only a coref-
erential reading for the reflexive pronoun, i.e., (1) means that Bert washed Bert.
In contrast, sentence (2) has no coreferential reading for the non-reflexive pro-
noun, i.e., to (most) adult speakers (2) means that Bert washed someone other
than himself. In order to model not only adult interpretation, but also a peculiar
pattern in the acquisition of this piece of pragmatic competence, Hendriks and
Spenader (2005) adopt a simple -system with two forms mhimself for (1) and
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mhim for (2), and two meanings tBB for a situation in which Bert washed Bert
and tBE for a situation in which Bert washed Ernie. All possible form-meaning
combinations are generated in this system and the ordering can be visualized as
follows:4

tBB tBE
mhimself • •!!

""mhim •
##

!! $$ •
This gives rise to the following sets of optimal pairs:

Optsyn = {〈mhimself, tBB〉 , 〈mhim, tBE〉}
Optsem = {〈mhimself, tBB〉 , 〈mhim, tBB〉 , 〈mhim, tBE〉}

str,weak = {〈mhimself, tBB〉 , 〈mhim, tBE〉}

We should now ask what it means to say that the strongly optimal pairs are
〈mhimself, tBB〉 and 〈mhim, tBE〉 and whether this squares with what it means to be
a Nash equilibrium in an optimality game.

Suppose the speaker (Alice) and the hearer (Bob) are playing the corre-
sponding strategic optimality game. In this game, both Alice and Bob make
effectively simultaneous and independent decision. We may imagine that this
is achieved, e.g., by writing down and passing to a judge the choice between
either mhim or and mhimself for Alice, and between tBB and tBE for Bob. A Nash
equilibrium is then a pair of actions 〈m, t〉 such that, firstly, given Bob’s choice
t, Alice would not strictly prefer a message different from m, and, secondly,
given Alice’s choice m, Bob would not strictly prefer an interpretation different
from t. This means that if this game is played repeatedly, and if, for example,
Bob shows a tendency to play tBB however slightly more frequently, then Alice
would start to play mhimself more frequently, and the whole process would start
reinforcing itself until we reach the steady state in which Alice always plays
mhimself and Bob always plays tBB. This steady state is a Nash equilibrium,
and to think of Nash equlibria as steady states in this way is indeed the most
prevalent textbook interpretation of this solution concept (e.g. Osborne and Ru-
4 An arrow from one form-meaning pair to another indicates that the form-meaning pair to

which the arrow points is strictly more preferred according to ". It is not essential here that
the ordering is derived from particular constraints, each with its own independent motivation
(see Hendriks and Spenader 2005, for details).
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binstein 1994; Osborne 2004; Heap and Varoufakis 2004).
But this has nothing to do with either the way that we imagine communi-

cation to proceed if online pragmatic reasoning is concerned, or with a reason-
able model of language evolution under pragmatic pressures. It is also not the
way we would commonly interpret a set of (strongly) optimal form-meaning
pairs. The above set of strongly optimal pairs, which contains 〈mhimself, tBB〉
and 〈mhim, tBE〉, is commonly taken to describe conditional production and in-
terpretation behavior (that is in a certain sense optimal). In particular, from a
production point of view this set captures that if the speaker wants to express
the meaning tBB then it is optimal to use message mhimself and that if the the
speaker wants to express the meaning tBE then it is optimal to use message mhim.
Similarly, from an interpretation point of view the set captures that if the hearer
observes message mhimself, he should optimally interpret this as meaning tBB,
and if the hearer observes message mhim, he should optimally interpret this as
meaning tBE.

In effect, that means that Nash equilibrium is an inadequate characteriza-
tion of strong optimality, because optimality games are, qua strategic game, the
inadequate game model for pragmatic -systems. The critique then carries over
to Dekker and van Rooij’s characterization of weak optimality in terms of iter-
ated Nash selection. Phrased polemically, if Nash equilibrium is an inadequate
characterization of strong optimality, then if you repeatedly link Nash equilib-
rium and strong optimality in a reduced system (be it -system or optimality
game), then this is not making things better, but worse.5

3 BOT and Signaling Games

The above considerations suggest that the natural way of interpreting a set of
form-meaning pairs —be they optimal or not— is not as a set of Nash equilibria,
but rather as a (possibly partial) specification of conditional production and
interpretation behavior. Speech production proceeds from a thought or intention
that needs to be expressed to a choice of form to express the desired content
with. Interpretation of an utterance starts only after a message that needs to
be interpreted has been observed. This is all natural, I believe, but it does call
for a different game model to match pragmatic -systems: we need at least a

5 For more detailed criticism also of the concept of iterated Nash selection see Franke (2009).
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dynamic game in which the speaker chooses a message conditional on a to-be-
expressed meaning, and the hearer subsequently chooses an interpretation given
that he has observed a form.

The perhaps most manageable and (for that reason) most widely studied
kind of game that fits this description is a signaling game. A signaling game is
a special kind of dynamic game with incomplete information that has been stud-
ied extensively in philosophy (Lewis 1969), economics (Spence 1973), biology
(Zahavi 1975; Grafen 1990) and linguistics (Parikh 1991, 1992, 2001; van Rooij
2004). Informally speaking, the idea is that the sender (the agent modelling the
speaker) knows the true state of affairs t, but the receiver (the agent modelling
the hearer) does not. Given the true state t the sender then chooses a message m
which the receiver observes. Subsequently, the receiver chooses an action a as
his proper response. An outcome of such a game is given as the triple 〈t,m, a〉.
Naturally, sender and receiver may prefer some outcomes more than others and
these preferences may select for a particular class of sender and receiver behav-
ior under a given solution concept.

Formally, a signaling game (with meaningful signals) is a tuple

〈{S ,R} , T, Pr,M, [[·]] , A,US ,UR〉

where sender S and receiver R are the players of the game; T is a set of states
of the world; Pr ∈ ∆(T ) is a probability distribution over T , which represents
the receiver’s uncertainty which state in T is actual;6 M is a set of messages that
the sender can send; [[·]] : M → P(T ) \ ∅ is a denotation function that gives
the predefined semantic meaning of a message as the set of all states where that
message is true (or otherwise semantically acceptable); A is the set of response
actions available to the receiver; and US ,R : T × M × A → R are utility func-
tions for both sender and receiver that give a numerical value for, roughly, the
desirability of each possible play of the game.7

In general, behavior of players in dynamic games is represented in terms

6 As for notation, ∆(X) is the set of all probability distributions over set X, YX is the set of all
functions from X to Y , X : Y → Z is alternative notion for X ∈ ZY , and P(X) is the power
set of X.

7 To rule out certain irrelevant and aberrant cases, I will assume throughout that for each state
t there is at least one message m such that t ∈ [[m]] and that Pr has full support, i.e., that
Pr(t) > 0 for all t ∈ T .
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of  which select possible moves for each agent for any of their choice
points in the game. For signaling games, a    s ∈ MT is a
function from states to messages which specifies which message the sender will
or would send in each state that might become actual. A   
r ∈ AM is a function from messages to actions which similarly specifies which
action the receiver will or would choose as a response to each message he might
observe. (Obviously, the receiver knows only what message has been sent, but
not what state is actual, so he has to choose an action for each message he might
observe and cannot condition his choice on the actual state of affairs). A 
  〈s, r〉 is then a characterization of the players’ joint behavior
in a given signaling game.

3.1 Optimal Pairs as Partial Strategies

If my previous argument is correct, and a set of optimal pairs, is to be interpreted
as a specification of conditional production or comprehension behavior, then
we should generally link sets of form-meaning pairs, be they optimal or not,
to strategies in a suitable signaling game. In particular, a set of form-meaning
pairs partially defines a sender or receiver strategy in a   
  where

(i) the set of states in the signaling game are the meanings T of the -system;
these are the meanings that the speaker might want to express;

(ii) the set of messages in the signaling game are the forms M of the -system;
these are the messages the speaker can choose to express a meaning when
she wants to; and

(iii) the set of receiver actions in the signaling game are interpretations, i.e., the
meanings T of the -system.

In general, we can read off a (partial) description of a sender and receiver strat-
egy for such a game from any set O ⊆ M × T . If we agree to write

O(t) = {m ∈ M | 〈m, t〉 ∈ O} and O(m) = {t ∈ T | 〈m, t〉 ∈ O} , (3.1)
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the set of pure sender strategies in a signaling game with interpretation actions
compatible with O is:

S(O) = {s ∈ S | O(t) ! ∅ → s(t) ∈ O(t)} ;

and the set of pure receiver strategies compatible with O is:

R(O) = {r ∈ R | O(m) ! ∅ → r(m) ∈ O(m)} .

Obviously, an arbitrary set O need not specify a full strategy. For instance, there
may be states t for which O(t) is empty, so that when taken as a description of
a sender strategy O is only a partial description. I suggest that this is really
how we should set the link between  and game theory in pragmatics: sets of
form-meaning pairs —no matter whether any notion of optimality has selected
these— are specifications of strategies in a corresponding signaling game with
interpretation actions.

3.2 OT-Systems and Signaling Games

Linking form-meaning pairs to strategies may be a natural idea, but this much
does not yet fix a complete translation between -systems and signaling games.
Some correspondences are hardly worth mentioning: speakers correspond to
senders and hearers correspond to receivers, of course, and the generator places
restrictions on the set of possible form-meaning associations and this naturally
finds its expression in the semantic denotation function

〈m, t〉 ∈ Gen iff t ∈ [[m]]

if we assume that the corresponding signaling game makes truthful signaling
obligatory, i.e., that the sender can only ever send a true message in a given
state. But all this still does not fix an interpretation of the ordering " of the -
system. Also the prior probabilities Pr(·) and the utilities US ,R for both sender
and receiver are still unspecified.

Formally, there are many possibilities of translation between -systems
and signaling games. I have explored one such formal parallel in Franke (2009),

122



Bi-OT and Signaling Games

where I link optimality notions with the behavior of strategic types in a se-
quence of iterated best responses. An iterated best response model, or model
for short, is an epistemic solution concept in which different strategic types of
players are defined in terms of their beliefs about opponent player behavior (cf.
Jäger 2008; Jäger and Ebert 2009). The beginning of the sequence is given by
naı̈ve strategic types of level 0 who do not take their opponent’s perspective into
account, but who may be susceptible to certain focal framing effects in the game
structure (cf. Schelling 1960, for focality). Players of level k+1 then believe that
they are facing a level-k opponent and play a best response to that belief. It is
then possible to identify in particular the behavior of naı̈ve level-0 receivers with
unidirectionally optimal interpretation, the behavior of level-1 senders with uni-
directionally optimal production and the interpretation of level-2 receivers with
strong optimality if we assume that the receiver uses a particular, simplistic
(and strictly speaking incorrect) belief formation process when computing his
posterior beliefs after receiving a message (see Franke 2009, for details).

This characterization of optimality notions in terms of  reasoning as-
sumed an independently motivated  model and tried to match optimality no-
tions with as little amendment as possible onto the strategic types of this model.
It turned out, however, that especially a characterization of weak optimality is
rather difficult, because the game-theoretic idea of a rational best response to a
belief in an opponent strategy is holistic in the sense that it takes into account
the whole of an opponents strategy (see also section 4.2). This makes it possible
that certain form-meaning associations appear optimal in early stages, but are
dismissed as optimal later on, because every possible form-meaning association
is always reconsidered at every iteration step. Opposed to that, the  algo-
rithm, which selects for weak optimality, is rather myopic in that the set of opti-
mal form-meaning associations grows monotonically. The upshot of this is that
Bayesian rationality, if based on a standard belief in opponent strategy, does not
always match the fast-and-frugal form-meaning selection process modelled by
the  algorithm. In Franke (2009) I therefore give a restriction on agent’s be-
lief formation, which is admittedly rather severe, but which guarantees a match
between rationalistic  and weak optimality.

In the following, I would like to go a different route, one that is closer
to -pragmatics and parts from the idea of staying as close as possible to the
rationalistic norms of standard game theory. I would like to start out from the
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assumption that sets of form-meaning pairs describe partial strategies of senders
and receivers in a signaling game. Based on this, it is possible to simply recon-
struct the -algorithm as a behavioral definition of strategic types of players.
Finally, we can then look back at this behavioral characterization and ask which
epistemic assumptions, e.g., about belief formation, rationality or preferences,
would give rise to this behavior and how these assumptions square with the
common interpretation of optimality notions in the pragmatic -community on
the one hand, and the accepted standards of game theory on the other. The epis-
temic interpretation of optimality that I end up suggesting is that bidirectional
optimality is a process of, if necessary iterative, self-monitoring for congruence
between form-meaning associations in production and interpretation.

4 Iterated Self-Monitoring

In order to match sets of form-meaning pairs to strategies of senders and re-
ceivers, we should assume that the set of receiver actions equals the set of states
T = A. Going a step further, let us also assume that the signaling game corre-
sponding to a given -system has a particular payoff structure, namely that the
signaling game models a situation in which sender and receiver would like to
communicate the true state of affairs successfully. This is achieved by setting:

US (t,m, a) = UR(t,m, a) =




1 if t = a

0 otherwise.

Let us call a signaling game with this payoff structure an  .
Recall that according to the standard interpretation of unidirectional opti-

mality, as outlined in section 1, we want to link unidirectional optimality to the
behavior of senders and receivers who do not take their opponent’s strategy into
account but only follow their own preferences on form-meaning associations as
specified by a given -system. This can be achieved if we assume that there
are naı̈ve strategic types which do not take a belief about their opponent into
account, but merely play a rational best response given their preferences about
form-meaning associations.
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4.1 Unidirectional Optimality and Naı̈ve Players

For the sender this is easily achieved by assuming that messages have state-
dependent costs. We model this by a function C : T × M → R that associates
for every state t and message m the costs C(t,m) that sending m in state t incurs
for the sender.8 To translate the speaker’s preferences, as captured in " into the
signaling game, we simply assume that for all 〈m, t〉 and 〈m′, t〉 in Gen:

〈m, t〉 " 〈m′, t〉 iff C(t,m) ≤ C(t,m′).

We may then assume that a naı̈ve, but rational sender type S 0, who does not take
interpretation behavior into account but otherwise cares for her preferences, will
choose a message that minimizes costs in each state. We can represent this
sender type by a set of pure strategies as follows:

S 0 =
{
s ∈ S | ∀t ∈ T s(t) ∈ arg min

m∈M
C(t,m)

}
.

By construction, it is trivially so that:9

〈m, t〉 ∈ syn iff m ∈ S 0(t).

In words, our naı̈ve sender type corresponds behaviorally to unidirectional op-
timality along the production dimension.

For the receiver a similar move is possible. Since in an interpretation game
states correspond one-to-one to actions, and, moreover, the receiver would like
to match his response action to the true state, we find that a receiver who does
not take his opponent’s strategy into account would maximize for the most
likely state in which a given message could have been sent (given the restric-
tions on truthful signaling). That is to say that prima facie we would like to
construct a naı̈ve receiver type similar to S 0 who takes into account only his
preferences as represented in his prior probabilities Pr(·). The problem with
this is that not all -orderings can be translated in this way because, obviously,

8 I will follow standard practice and assume that these costs are nominal, i.e., that they apply
only when expected utilities based on US reach a tie.

9 As for notation, a set of pure sender strategies like S 0 can equivalently be represented as a
set of form-meaning pairs. With this, S 0(t) is defined by the notational convention in (3.1).
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Pr(·) only specifies a global ordering on T independent of the message that the
receiver observes. However, there are independent arguments for thinking of
the receiver’s prior probabilities merely as a simplistic and convenient way of
specifying those global form-meaning associations that do not vary with the
message (see Franke 2009, section 3.1). If we then want to be able to trans-
late any arbitrary -ordering into a signaling game via prior probabilities, we
should adapt the definition of a signaling game to include an  -
 Ass : M × T → R, such that for all 〈m, t〉 and 〈m, t′〉 in Gen we have:10

〈m, t〉 " 〈m, t′〉 iff Ass(m, t) ≥ Ass(m, t′).

Based on his associative preferences, a naı̈ve receiver R0, who is rational but
does not take into account his opponent’s behavior, will maximize for each ob-
served message the likelihood of matching the true state by selecting a maxi-
mally associated state:

R0 =
{
r ∈ R | ∀m ∈ M r(m) ∈ arg max

t∈T
Ass(m, t)

}
.

Again, by construction, this corresponds with unidirectional optimality along
the comprehension dimension:

〈m, t〉 ∈ sem iff t ∈ R0(m).

In line with the common idea that unidirectional optimization does not in-
volve taking the opponent’s behavior into account, the above definition of naı̈ve
players offers a straightforward behavioral implementation of unidirectional op-
timality in a signaling game. Moreover, this characterization also allows to draw
further conclusions about a possible epistemic interpretation of unidirectional
optimality. We should think of preferences, as captured in the -ordering ",
as the strength of associating form-meaning pairs. This is given by grammar,
in a wide sense of the term, and may involve contextual association biases, de-
pending on the intended application of the -system. But, crucially, building
on these basic grammatical preferences, unidirectional optimality is supplied by

10 A prior probability function Pr(·) is then just a special case of an association function: con-
stant over all m and scaled to the interval [0; 1].
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Bayesian rationality in the absence of any conjecture about opponent behavior.

4.2 Strong Optimality as Self-Monitoring

Strong optimality is defined as the intersection of unidirectional optimization
along the comprehension and the production dimension, and is therefore often
considered an operation that takes into account the opponent’s strategy (e.g.
Hendriks and Spenader 2005; Flobbe et al. 2008). However, there is a funda-
mental difference between the way game theory models such perspective taking
from the way this notion is present in strong and weak optimality. This section
therefore suggests to look at strong optimality as a mere self-monitoring, not as
genuine perspective taking in the strong game-theoretic sense.

Let us begin by looking more closely at the idea of perspective taking in
game theory. If a rational agent takes the behavior of an opponent into account,
game theorists assume that the agent plays a rational best response to the belief
that her opponent is behaving in the specified way. Take, for instance, the be-
havior of a naı̈ve receiver R0. A belief in this behavior is a belief that message
m is interpreted as some state in R0(m). If a sender plays a best response to
this belief, she optimizes her behavior, based on her preferences, by taking into
account the complete interpretation behavior of R0, i.e., the way all messages
are interpreted according to R0. In other words, perspective taking in game the-
ory is holistic in the sense that the whole strategy of the opponent is taken into
account when making a choice.

This is not what strong optimality implements. In order to adhere to strong
optimality, it is usually not necessary to take the whole strategy of the opponent
into account. For example, a sender only has to do two things if she wants to
conform to strong optimality (when this is possible): firstly, given a state t, she
needs to check her production preferences to compute OTsyn(t) ⊆ M; secondly,
she has to check whether some message in OTsyn(t) would also be interpreted
as t given the receiver’s interpretative preferences. It becomes clear thus that
strong optimization merely implements a simple associative feedback-loop, but
not full perspective-taking in the standard game-theoretic sense. In other words,
under this interpretation strong optimality is mere - to check for
association congruence between production and comprehension.
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4.3 Weak Optimality as Iterated Self-Monitoring

This idea of monitoring production by self-interpretation and monitoring in-
terpretation by self-production also carries over to an interpretation of weak
optimality. Remember that the -algorithm repeatedly checks for strong op-
timality in reduced -systems where optimal and blocked form-meaning pairs
are removed in every step. This process can be mirrored by defining more so-
phisticated player types of level n > 0 whose behavior corresponds to the n-th
round of computation of the -algorithm.

For this purpose, let AC0 be the set of level-0 association congruent from-
meaning pairs: AC0 = str. Let us then define level-(n+1) players as playing
in conformity with level-n association congruence where possible:11

S n+1(t) =




ACn(t) if ACn(t) ! ∅
arg minm∈M\ACn(T ) C(t,m) otherwise

Rn+1(m) =




ACn(m) if ACn(m) ! ∅
arg maxt∈T\ACn(M) Ass(m, t) otherwise.

To complete the inductive construction, we also need to define level-(n + 1)
association congruence as: ACn+1 = S n ∩ Rn. This construction, call it it-
erated self-monitoring, quite obviously replicates exactly the workings of the
-algorithm.

Iterated self-monitoring is not only a rephrasing of the -algorithm, but
actually helps interpreting weak optimality. For we can now ask and answer
the question which assumptions about the psychology of agents give rise to
the above behavior of sophisticated players. The obvious answer is that agents
perform self-monitoring iteratively, but only when necessary, and believe that
their opponents do too. More concretely, the behavior of a sophisticated level-
(n + 1) sender follows from two simple assumptions:

(i) the player performs self-monitoring based on the behavior of level-n play-
ers and plays accordingly when this gives a result;

(ii) where this gives no result, the player plays rationally given the partial
11 I write ACn(T ) as the set of all m for which there is some t such that 〈m, t〉 ∈ ACn, and

similarly for ACn(M).
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belief that the opponent adheres to (i).

Let us first validate that these two assumptions indeed give rise to the behavior
of sophisticated players as defined above and reflect on the conceptual implica-
tions afterwards.

Take, for instance, a sender of level (n + 1) who wishes to express the
state t. (The argument for the receiver is parallel.) Firstly, S n+1 would perform
self-monitoring based on level-n behavior and thus compute level-n association
congruence. If some message satisfies level-n association congruence for t,
any message with this property would be used. This way, the first assumption
directly assures that S n+1(t) = ACn(t) whenever ACn(t) ! ∅.

The second assumption is just a little bit more complicated. It kicks in
when the sender wants to express some t " ACn(M). In that case, S n+1 is
required to play rationally to the belief that her opponent’s behavior is char-
acterized by the (possibly partial) strategy Rn+1(m) = ACn(m) for all m such
that ACn(m) ! ∅.12 Given such a partial conjecture, it would always yield an
expected utility of 0 (possibly minus some nominal cost, of course) to try to
express a state in t " ACn(M) with a message m ∈ ACn(T ). But in the absence
of a definite conjecture about how messages in M \ACn(T ) are interpreted, any
such message has at least a positive chance of obtaining the right interpretation,
so that the expected utility of sending a message from the M \ ACn(T ) in t will
be strictly bigger than zero, and, in fact, equal for all messages in this set. Con-
sequently, a rational level-(n+ 1) sender will choose any cost-minimal message
in M \ ACn(T ) in each state t " AC0(M). It turns out that the second assump-
tion effectively gives, via partiality of belief in self-monitoring, a rationalistic
explanation of the blocking mechanism of the -algorithm.

4.4 Relflection on Iterated Self-Monitoring

Taken together, this suggests that we should think of weak optimality as a pro-
cess of self-monitoring to the maximal depth necessary to express or interpret
a form. Since ACn ⊆ ACn+1 for all n, there is no need to compute more so-
phisticated play than the minimal k for which ACk(t) ! ∅, when expressing t,
or ACk(m) ! ∅, when interpreting m. Only when necessary, further iteration

12 Notice that this belief may be partial, for it may mean that S n+1 has no belief about how her
opponent will interpret a message m for which ACn(m) = ∅ if such messages exist.
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of self-monitoring takes place, by adopting a belief that the opponent also per-
forms such iterated self-monitoring. At each step of this procedure, however,
the conjecture about opponent behavior is not the full-fledged perspective tak-
ing that is standard in game theory, but only an associative feedback and the
assumption that the opponent also performs such self-monitoring.

Interestingly enough, Bayesian rationality features in this interpretation of
optimality only as an explication of preference maximization in the absence of
a conjecture about opponent behavior. In other words, unlike in the structurally
similar  models of, for instance, Jäger and Ebert (2009) and Franke (2009),
the more sophisticated types do not rely on deeper and deeper nestings of belief
in rationality. The sophisticated types that match the -algorithm only require
ever more nested beliefs in self-monitoring. This is in a sense a weaker require-
ment, but it may nonetheless explain why weak optimality is often too strong
a theoretical prediction to be borne out in reality (cf. the arguments by Beaver
and Lee 2004): that agents can coordinate successfully on weakly optimal com-
munication behavior becomes dubious proportional to the number of iteration
steps in self-monitoring, due to natural restrictions on cognitive resources.

However, to say that nested belief in self-monitoring, as found in  under
the interpretation favored here, is weaker than nested belief in rationality under
full-fledged perspective taking, as found in recent  models, is not necessarily
an argument for  and against . In order to be an argument for  we
would have to motivate why exactly this kind of self-monitoring should occur
in pragmatic language use. It is fairly standard to assume monitoring by internal
self-interpretation (cf. Levelt 1989), but this is not necessarily so for compre-
hension. This points favorably into the direction of an asymmetric approach to
, as advanced by (see Zeevat 2000).

Finally, it is also not implausible to accept simple self-monitoring as a rea-
sonable mental operation, be it in production alone or also in interpretation, yet
to reject nested beliefs in self-monitoring opponents as a natural cognitive pro-
cess. This would corroborate the position of, for instance, Blutner and Zeevat
(2008) that only strong optimality is reasonable as an online mechanism, while
weak optimality is not.
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5 Conclusion

To take stock, I have argued that it useful and desirable to match optimality
theory with game theory in order to supply a characterization of ’s basic no-
tions in terms of agents’ mental states and behavioral disposition. I have tried
to show that the analogy between -systems and strategic optimality games
suggested by Dekker and van Rooij (2000) is conceptually flawed, and does
not achieve this end. Therefore, I have suggested to work out a connection
between signaling games and -systems, and between optimality notions and
different kinds of more or less sophisticated player types. From this point of
view, unidirectional optimality is Bayesian rationality that takes into account
only preferences on form-meaning associations in the absence of a conjecture
about opponent behavior. Strong optimality turned out to be best described
as a simple self-monitoring feedback process, not as full strategic perspective
taking. Weak optimality then presents itself as an iterated process of such self-
monitoring which is defined in terms of beliefs in self-monitoring and rational
responses to these (possibly partial) beliefs.
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