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Low- dimensional and speaker-independent linear vocal tract parametrizations can
be obtained using the 3-mode PARAFAC factor analysis procedure first introduced
by Harshman et al. (1977) and discussed in a series of subsequent papers in the Jour-
nal of the Acoustical Society of America (Jackson (1988), Nix et al. (1996), Hoole
(1999), Zheng et al. (2003)). Nevertheless, some questions of importance have been
left unanswered, e.g. none of the papers using this method has provided a consistent
interpretation of the terms usually referred to as “speaker weights”. This study at-
tempts an exploration of what influences their reliability as a first step towards their
consistent interpretation. With this in mind, we undertook a systematic comparison
of the classical PARAFAC1 algorithm with a relaxed version, of it, PARAFAC2. This
comparison was carried out on two different corpora acquired by the articulograph,
which varied in vowel qualities, consonantal contexts, and the paralinguistic fea-
tures accent and speech rate. The difference between these statistical approaches can
grossly be described as follows: In PARAFAC1, observation units pertain to the same
set of variables and the observation units are comparable. In PARAFAC2, observa-
tions pertain to the same set of variables, but observation units are not comparable.
Such a situation can be easily conceived in a situation such as we are describing: The
operationalization we took relies on the comparability of fleshpoint data acquired
from different speakers, which need not be a good assumption due to influences like
sensor placement and morphological conditions.
In particular, the comparison between the two different approaches is carried out by
means of so-called “leverages” on different component matrices originating in re-
gression analysis, calculated as v = diag(A(A′A)−1A′) and delivering information
on how “influential” a particular loading matrix is for the model. This analysis could
potentially be carried out component by component, but we confined ourselves to
effects on the global factor structure. For vowels, the most influential loadings are
those for the tense cognates of non-palatal vowels. For speakers, the most promi-
nent result is the relative absence of effects of the paralinguistic variables. Results
generally indicate that there is quite little influence of the model specification (i.e.
PARAFAC1 or PARAFAC2) on vowel and subject components. The patterns for the
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articulators indicate that there are strong differences between speakers with respect
to the most influential measurement as revealed by PARAFAC2: In particular, the
most influential y-contribution is the tongue-back for some talkers and the tongue-
dorsum for other speakers. With respect to the speaker weights, again, the leverage
patterns are very similar for both PARAFAC-versions. These patterns converge with
the results of the loading plots, where the articulator profiles seem to be most altered
by the use of PARAFAC2. These findings, in general, are interpreted as evidence for
the reliability of the PARAFAC1 speaker weights.

1 Introduction

One broad research area aiming at a deeper understanding of the motor imple-
mentation of linguistic contrasts has been the search for efficient characteriza-
tions of vocal tract shapes by factor analytic methods. Nevertheless, the exact
purpose of their application is not as homogeneous as it might seem at first
glance: It has been suggested to evaluate statistical articulatory models in terms
of their potential to mimic articulatory behavior expressed in terms of articula-
tory degrees of freedom as in the tradition of Maeda (1979a,1979b,1990). But
also, a second tradition has focused its attention on these methods’ ability to
generalize over several speakers . Likewise, the statistical procedures are tuned
to different rationales: The first tradition leads to intraindividually fitted mod-
els advantageous for control purposes, as applied in articulatory control models
for speech synthesis (Badin et al., 2002) or facial animation (Maeda, 2005).
Multispeaker solutions are characterized by the attempt to reveal latent building
blocks underlying articulatory organization. In this work, we will concentrate
on the latter approach, i.e. the “PARAFAC-tradition”.

1.1 Classical PARAFAC1

PARAFAC is a type of multi-mode analysis procedure and therefore contrast-
ing with Principal Component Analysis (PCA) or factor analysis, which are
two mode representations. PARAFAC requires an at least three-dimensional
data structure with the third dimension usually being represented by different
speakers, i.e. if all speaker weights are fixed to be one, then PARAFAC reduces
to PCA. The advantage of PARAFAC is that there is no rotational indeterminacy
as in PCA, in other words, PARAFAC gives unique results. The PARAFAC (in
accordance with literature from now on called PARAFAC1) model can be writ-
ten as (following Kiers et al., 1999, alternative notations are given in Harshman
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et al., 1977 or Nix et al., 1996)

Xk = ASkV
T (1)

where Xk is the kth “slab” of the input data matrix, with k the number of
speakers, A is the matrix of articulator loadings, S is the diagonalized matrix of
speaker loadings for speaker k and V the loading matrix for vowels. The matrix
of articulator weights is held constant for each slab of the data cube, i. e. for
all k speakers. This addresses Cattell’s notion of parallel proportional profiles:
“The basic assumption is that, if a factor corresponds to some real organic unity,
then from one study to another it will retain its pattern, simultaneously raising
or lowering all its loadings according to the magnitude of the role of that factor
under the different experimental conditions of the second study.” (Cattell and
Cattell, 1955, citing Harshman and Lundy, 1984, p. 151). Another way to put it
is this (Harshman 1977, p. 609): “Thus if speaker A uses more of factor 1 than
does speaker B for a particular vowel, then speaker A must use more of factor
1 than speaker B in all other vowels. The ratio of any two speakers’ usage of
a given factor must be the same for all vowels.” Fitting the PARAFAC1 to the
data in the least squares sense amounts to minimizing

σ1(A, V, S1, . . . , Sk) =
k∑

k=1
||ASkV

T ||2 (2)

There is a unique solution minimizing (2) up to scaling and permuta-
tion. Cattell’s proportionality does not always have to be a plausible assumption
though; it can also turn out to be too restrictive in some cases. For illustration,
the other extreme would be to put no structure at all onto A -which is equal to
reducing the PARAFAC model to a PCA and loosing the desirable uniqueness
properties.

Before turning to the constraints that define PARAFAC1 and describing
less restrictive alternatives, we give a brief review of the studies using this
method.

1.2 Survey of studies using PARAFAC1

The presumably largest focus of interest in the late 80’s to the mid 90’s by
researchers from the speech production area using multimode Data Analysis
techniques has been an issue raised in a paper by Jackson (1988) concerning
the number of factors that are reliably extractable by means of the PARAFAC1
algorithm. Jackson claimed to have extracted a three-factor solution from a
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corpus of Icelandic data. This claim was rejected later by Nix et al. (1996)
highlighting the importance of diagnostic measures for the assessment of relia-
bility of a PARAFAC solution: Harshman & Lundy (1984) suggested to use the
triple product over the three modes of the correlations between corresponding
sets of weights for each pair of factors. This triple product, also referred to as
“congruence” coefficient can, in the case of PARAFAC1, be calculated as the
triple Hadamard product of the products of the component matrices with their
transposes:

TC = (ATA) ◦ (BTB) ◦ (CTC) (3)

Harshman & Lundy (1984) suggested triple products more negative than -0.3
between a pair of factors indicating a degenerate solution since in this case both
factors are attempting to capture similar portions of the total variance, resulting
in a second factor being simply a degenerate version of the first. The reanalysis
of the data published by Jackson (1988) carried out by Nix et al. (1996) indi-
cated that the third factor in Jackson’s solution was not reliable which lead to
disenchantment about the explicative claim made by this kind of modeling.

A second major result of the discussion of the 80’s and 90’s was the for-
mat of input data for applications of the PARAFAC1 algorithm to articulatory
problems: “Although measuring the shape of the tongue with respect to anatom-
ically normalized vocal diameter gridlines1 does reduce the initial representa-
tional dimension, this measurement scheme needlessly loses information such
as the positions of the tip of the tongue in the horizontal dimension. More
importantly, the range of possible solutions is artificially constrained by the ori-
entation of the grid lines. For example, a factor representing protrusion and/or
retraction of the tongue tip is not possible because no grid line is oriented in
this direction.” Thus it is not too surprising that both of our factors contain a
quite strong horizontal component, as our data are ”fleshpoint data” (Nix et al.,
1996, p. 3708). In other words, the quality of the data seen by the algorithm
determines the solution obtained by fitting PARAFAC, and therefore also the
interpretation of the factors. This in particular can become a hot topic concern-
ing the relevance of analyzes obtained by this method considering the advent of
three-dimensional acquisition techniques in speech production research.

The first application of the PARAFAC algorithm in a reviewed journal
contribution to three-dimensional tongue configurations was published in a pa-
per by Zheng et al. (2003). The essential novelties apart from the three spatial
dimensions of the input data consist in (a) a more thorough discussion of rea-

1The original PARAFAC work was based on the measurement of distances along anatom-
ically defined reference lines forming a “measurement grid”, which was calculated for each
speaker
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sonable preprocessing strategies for the application of the algorithm to tongue
configurations and (b) the assessment of the solutions obtained by PARAFAC1
by more recent diagnostics of model degeneracy. With respect to the first point,
the authors apply additional scaling subsequent to centering as applied in pre-
vious studies. The purpose of the scaling procedure is to normalize each speak-
ers’s data to unit sum-squared variation, “so that talkers with greater variabil-
ity and/or larger vocal tracts do not dominate the PARAFAC fitting process”
(Zheng et al., 2003, p. 482).

With respect to the second point in the preceding paragraph, i.e. the ap-
plication of more recent diagnostics of the reliability of model fits, it is useful
to have a closer look at family relationships between N-way methods. Here,
PARAFAC1 can be considered as a special case of a more general method of
three-way factor analysis, Tucker3 (Tucker, 1966). The structural model of
Tucker3 is given in formula (4):

X = V G(S ⊗ A)T . (4)

Here, X denotes the higher-way array to be modeled, V , S and A are the
component matrices (S the speaker weights, A the articulator weights and V
the vowel weights). G denotes the so-called “Tucker core” matrix. |⊗ | denotes
the Kronecker tensor product. Now, PARAFAC1’s structural model implies a
hypercube as shaping of the core array , e.g. for a 2-factor solution the core array
has the dimension 2 x 2 x 2. Furthermore, all elements off the hyperdiagonal
of the core array are required to be zero for a valid PARAFAC solution, i.e.
the core array is required to exhibit superidentity and therefore cancels in the
following representation of PARAFAC1:

X = V (S| ⊗ |A)T . (5)

Here, S| ⊗ |A denotes the Khatri-Rao product. This conceptualization of
PARAFAC is used in Bro (1998) for the development of an alternative criterion
of the number of factors and the detection of model degeneracies in PARAFAC1
models. It measures the percentage of the variation in the Tucker core matrix
G consistent with PARAFAC1’s requirement of core hyperdiagonality. Bro &
Kiers (2003) suggest that a core consistency of at least 90% is a good indicator
of a valid model.
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1.3 PARAFAC2

Above, we have mentioned Cattell’s notion of “parallel proportional profiles”,
which does not always have to be a valid assumption; it can also turn out to
be too restrictive in some cases, and, as we have shown elsewhere (Geng &
Mooshammer, 2000), a less restricted algorithm, PARAFAC2, offers an at-
tractive alternative. Referring to the notion we have used in equation (1) for
PARAFAC1 for a single “slab” of the multiclassified array, PARAFAC2 can be
expressed as

Xk = AkSkV
T (6)

Within PARAFAC2, each loading matrix for the articulators, Ak, is expressed
as Ak = PkA. Pk is an I ∗R matrix, where R denotes the number of factors and
I the number of measurements in the articulator domain. A is constant over all
these individual profiles and of size R ∗R. The rotational freedom provided by
the PARAFAC2 model is adequate for approximating certain deviations from
the strict linearity required in PARAFAC1. PARAFAC2 incorporates an invari-
ance constraint on the factor scores as a milder version of factorial invariance:
The cross-product matrix AT

k Ak is constrained to be constant over k speakers.
The model structure is determined by the choice of the structure of Ak. Bro
(1998) compares PARAFAC2’s flexibility in this respect to Procrustes analy-
sis. In Geng & Mooshammer (2000) we have shown that the strict assumptions
required in the classical PARAFAC1 model were too strong to capture stress-
specific variation in full detail. In contrast, PARAFAC2 allowed to account for
systematic variation produced by word stress by imposing this weaker struc-
ture on the data. In particular, PARAFAC2 modeled the physical properties of
the vocal tract shape in a more realistic and plausible way with respect to the
description of mean factor shapes.

2 Method

2.1 The Corpora

In this study, we will reanalyze two distinct corpora. Both of them sample vowel
nuclei acquired with fleshpoint tracking methods. The first corpus, which we
will term the “stress corpus” was described in Geng & Mooshammer (2000), the
second corpus, which we will refer to as the “speech rate corpus” was published
in a paper by Hoole (1999). We will reiterate the description of these in order
to pinpoint the differences between them, which could potentially endanger our
interpretations concerning the method comparison we wish to achieve.
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2.1.1 The Stress Corpus

Six native speakers of German (4 males, JD, PJ, CG and DF and 2 females, SF
and CM) were recorded by means of an electromagnetic midsagittal articulo-
graphic device. The speech material consisted of words containing /tVt/ syl-
lables with nuclei (V= /i,I,y,Y,e,E,E:,ø,œ,a,A,o,O,u,U/) in stressed and unstressed
positions. Stress alternations were fixed by morphologically conditioned word
stress and contrastive stress. So each symmetric /CVC/-sequence was em-
bedded in the carrier phrase Ich habe tVte, nicht tVtal gesagt. (I said , not
) with the first test syllable /tVt/ always stressed and the second always un-

stressed. For each of the 15 vowels, between six and ten repetitions of these
vowels were recorded. Tongue, lower lip and jaw movements were monitored
by EMMA (AG100, Carstens Medizinelektronik). Four sensors were attached
to the tongue, one to the lower incisors and one to the upper lip. Two sensors
on the nasion and the upper incisors served as reference coils to compensate for
head movements under the helmet during the recording session. Jaw and lower
lip movements will not be included in the analysis.

2.1.2 The Speech Rate Corpus

This corpus consists of seven adults, six males and one female. The experimen-
tal conditions were similar with respect to apparatus, tongue sensor placement,
vowel environment and preprocessing to the stress corpus described in the pre-
vious section. The test utterances were formed by inserting the vowels into
three different consonant contexts /p p/,/t t/ and /k k/. Each symmetric CVC
sequence was embedded in a carrier phrase with the structure Ich habe geCVC
gsagt (I said ). The subjects were tested in two separate recording sessions,
usually a few days apart, which lasted about one hour each. In the first record-
ing session the speakers produced the utterances at normal speech rate, in the
second recording at a fast speech rate.

2.1.3 Potential Problems

• The data of the speech rate corpus, in contrast to the stress corpus, were
recorded on two different occasions. Therefore, the sensors had to be at-
tached twice, potentially resulting in artifacts of sensor placement.

• The material of the stress corpus contained two test words per item. It
does not seem implausible to assume that the amplitudes of articulatory
movements reduce over the course of the intonation phrase.
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3 Results

For both corpora, we performed two analyzes of the data, the first using
PARAFAC1 and the second PARAFAC2. The analysis of the rate corpus con-
cerning PARAFAC1 is a partial reanalysis of results published in Hoole (1999)
and therein referred to as the model for “multiple consonantal contexts”. There-
fore, reprinting the displays already published in the paper mentioned would be
redundant and is skipped with reference to the original publication. To stay in
line with the results published in this paper, we also used the same preprocess-
ing strategy as in Hoole (1999): The data delivered to the algorithm consisted of
displacements from the average articulatory configuration of each subject. This
amounts, in “standard terminology” (Harshman & Lundy (1984)) to centering
across the vowel mode. This does not necessarily have to be the optimal pre-
processing strategy, as elaborated in Zheng et al. (2003)2, but was adopted here
for optimal comparability. The same strategy was applied to the stress corpus as
well, for comparability purposes. Note that beforehand, in Geng & Moosham-
mer (2000), we had applied centering across vowel and speaker mode3, so that
the solutions are not directly comparable to these results. Furthermore, as men-
tioned in Geng & Mooshammer (2000), we had to constrain some modes in
some models to orthogonality in order to obtain non-degenerate solutions.
The results section is organized as follows: In the first part, we will have a
look at global fit measures like the percentage of variance explained in order to
achieve some basic insight into the structure of the models and to substantiate
our solutions as valid. In the second, descriptive part, we display the conven-
tional results on the solutions obtained, i.e. loading plots of extracted factors.
In the third part, we proceed with analyzing the leverages, i.e. the influences
that determine the exact solutions and the differences in fit between them.

3.1 Global fit

In the first step, we will have a look at the global measures for the different
solutions. As mentioned above, some of the models were constrained to or-
thogonality in the vowel mode in order to prevent strongly correlated factors
and degeneracy. This holds for both solutions analyzing the stress corpus, and

2We crosschecked the congruence between differently preprocessed factor solutions, more
precisely between the strategy adopted here and the strategy recommended by Zheng et al.
(2003) with additional scaling in the speaker mode. This measure resulted to 0.99 and evidences
an almost identical solution.

3contrary to the citation in Zheng et al. (2003).

226



Three-index factor analysis models in speech research

for the PARAFAC2 model of the rate corpus4.
Note that, unlike in principal component analysis, the sum of the variances
explained by single factors does not necessarily have to sum up to the total
percentage of variance explained by the whole model. Table 1 summarizes
these statistics. The percentage of variance explained for the PARAFAC1 in the
speech rate corpus was around 80% , as already published in Hoole (1999). The
amounts explained for the first and second factors amount to 61% and 24%
. The fit of PARAFAC2 with respect to this dataset is slightly better. For the
whole model this amounts to 82% and for the single factors to 21% and 61%
respectively.

Concerning the stress corpus, we observed 86% variation explained for
the total PARAFAC1 solution and 69% and 17% for the two factors separately.
For PARAFAC2, the same indicators amount to 90% ,18% and 72% . Taken to-
gether, for this corpus, the benefit in explained variances by using PARAFAC2
was substantial in contrast to the speech rate corpus. The core consistency di-
agnostic can only be calculated for PARAFAC1 model and can take values less
than or equal to 100. According to (Bro & Kiers, 2003, p. 276), a core consis-
tency close to 100% implies an appropriate model, and, as a rule of thumb, a
core consistency above 90% can be interpreted as ‘very trilinear’. Accordingly,
the consistency for both solutions reported here can be seen to almost perfectly
conform to the PARAFAC1 model. In other words, valid solutions seem to be
warranted and we can turn to the display of conventional loading plots.

Table 1. Summary statistics for fitted models

Perc.expl.tot Perc.expl.F1 Perc.expl.F2 CoreCond Congr. tot
P1 rate 80% 61% 24% 100 -0.05058
P2 rate 82% 21% 61% - 1
P1stress 86% 69% 17% 98.3 0.00008
P2 stress 90% 18% 72% - 1

3.2 Loading Plots

As can already been seen from table 1, the ordering of the factors is reversed in
the PARAFAC2 solutions resulting in a second factor with a higher percentage
of variance explained than the first factor. For the plots of vowel loadings,
the axes were changed according to convention, i.e. with high front vowels in

4Note that constraining the first (vowel) mode to orthogonality implies constraining the sec-
ond (articulator) mode. Nevertheless, congruences of around .95 for the unconstrained speaker
modes were indicating non-degenerate models
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Figure 1. Results for the SPEECH RATE database for
whole corpus, vowel loads
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the top left corner. This is not in general the case for the plots of the speaker
weights.

3.2.1 Speech Rate Corpus

Figure 1 shows the loading plots for the vowel mode split by consonantal con-
texts for the speech rate corpus. These plots can be directly compared to figure
4 in Hoole (1999). The PARAFAC2 solution can be seen as a rotated version of
the vowel space as described in Hoole (1999), i.e. the topological information
is retained. This implies that we do not have to discuss this aspect in further
detail. Similarly for the speaker weights shown in figure 2. Here, the results
for the PARAFAC1 solution are identical with the results of figure 6 in Hoole
(1999). Both solutions conform to a scaling down of articulation for subjects B,
C, M, S, and T in the fast rate condition, and a different behavior for speakers
H and P, conforming to the fact that an increase in speech rate can be achieved
by either downscaling the amplitudes of articulatory movements or by increas-
ing movement velocities. For the current study the absence of a substantial and
interpretable topological change between the two solutions is the interesting
aspect.
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Figure 2. Results for the SPEECH RATE database, speaker
weigths

In contrast to Hoole (1999), we show the loading plots for the articulator
weights split by paralinguistic conditions. These plots can be seen as the effects
of the factors on the tongue configurations of an average speaker. For the speech
rate corpus, this information is given in figure 3. In general, both solutions
cohere with the interpretation of the factors published in Hoole (1999). The
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most striking result in the PARAFAC1 solution appears to be the absence of a
strong difference in tongue shape between the projections at normal and fast
rate, the projection at fast rate being a somewhat downscaled version of the
projection at normal rate. This is slightly different for the PARAFAC2
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Figure 3. speech rate database, articulator loadings

solution. A downscaling of amplitudes is indeed observed, but addition-
ally, there are some shape-relevant aspects in this solution worth mentioning:
First, the negative shape of factor2 -corresponding to factor 1 in PARAFAC1,
front-raising- in the normal-rate condition is characterized by a lower tongue
blade sensor in comparison to the surrounding tongue tip and tongue dorsum
sensors. If this factor is assumed to encode a movement from an /a/-like to an
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/i/-like shape, the /a/-pole of this factor appears to be a more reasonable con-
figuration than the first factor of the PARAFAC1 solution. Subsidiary evidence
comes from the comparison of the /i/-like pole of the front-raising factor at nor-
mal speech rate: The tongue tip appears to be “more down” in the PARAFAC2
solution, which as well seem to be more reasonable. Interestingly, the infor-
mative patterns with respect to factor 2 arise in the fast-rate condition. Hoole
(1999, p.1026) had noted that his second factor shares with the solution found
in Harshman et al. (1977) “ the responsibility for forming a constriction in the
velar region, but our factor 2 shows above all a pattern of advancement and re-
traction, which is hardly the case for the “back raising” factor.” This tendency
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Figure 4. Results for the Stress database. Left Panels:
PARAFAC1, right panel: PARAFAC2. Tense vowels(+),
lax vowels(-)

appears to be even more prominent for the tongue back sensor in the fast rate
condition for the PARAFAC2 solution, where no raising movement at all is ob-
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servable.
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Figure 5. Articulatory configurations for the stress database

3.2.2 Stress Corpus

As mentioned above, for the stress corpus, both models were constrained to
orthogonality in the vowel mode. The PARAFAC1 model was quite close to de-
generacy, but we have shown the core consistency above (table 1) indicating an
acceptable coherence with trilinearity. In short, a pattern comparable to the one
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for the speech rate corpus was observed concerning vowel and speaker weights
shown in figure 4: There is no evident change in topology in vowel and speaker
plots comparing PARAFAC1 and PARAFAC2. With respect to the articulatory
configurations, the patterns are partly similar to the speech rate corpus: The
“trough-like” -shape of the tongue blade is also evident for /a/-like configura-
tion, but is visible in both stress conditions. Interestingly, both PARAFAC2
factors have quite a strong horizontal component except for the back raising
factor in unstressed condition.

3.2.3 Preliminary Summary

In this paragraph, the results obtained until so far will be summarized. PARAFAC1
and PARAFAC2 solutions give comparable results with respect to speaker
weights and vowel weights. This kind of topological invariance could be sub-
stantiated in a more formal way by showing that e.g. the shape difference in the
vowel spaces of PARAFAC1 and PARAFAC2 solutions is uniform, i.e. only
trivial translation, scaling, and rotation operations are involved. This idea is not
tracked further here, but could be performed by Generalized Procrustes analysis
(Gower, 1975). The articulatory configurations for the “modal speaker” with
respect to the paralinguistic features seem to show enhanced “flexibility” for
PARAFAC2. Nevertheless, the gain in variance explained is only substantial in
the stress corpus - the “/t/-only” data set. In the next paragraph, we will apply a
method to identify the most influential observations shaping the particular solu-
tions, particularly with regard to possible biases in the speaker weights caused
by the compromise quality of the PARAFAC1 solution.

3.3 Leverages

Leverages were originally developed for regression analysis as a tool for resid-
ual and influence analysis. For this reason, it might be more appropriate to speak
of the “squared Mahalanobis distance” in the context of a factoring method like
PARAFAC. Anyway, leverages are also widespread in two-way Principal Com-
ponent Analysis, therefore the term “leverage” also seems appropriate (Bro,
1997). For a particular loading matrix, e.g. for first mode loadings, leverages
can be calculated as

v = diag(A(A′A)−1A′) (7)

Their possible range is between 0 and 1. A high value indicates that an obser-
vation is influential, a low value indicates the opposite. As mentioned already,
leverages could have been calculated for each of the two factors separately for
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every mode. Here, we will limit ourselves to their evaluation with respect to the
factor structure as a whole. The basic results with respect to the leverages in
the vowel mode point to a corpus effect: The least influential observations are
the palatal vowels, the strongest contributions are made by long back vowels
and /a:/ This presumably is a corpus effect of the structure of the German vowel
system with its numerous front vowels. Furthermore, lax vowels are generally
less influential than their tense counterparts. The leverages in the speaker-mode
show hardly any effect of the paralinguistic variables: Fast rate and unstressed
shapes are generally less relevant for the total solution than normal rate and
stressed shapes. This holds with the exception of speaker H, who is character-
ized by a deviant articulatory implementation of speech rate Hoole (1999).
The calculation of leverages in the articulator mode offers an additional inter-
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Figure 6. rate corpus: Leverages articulator mode, Sensor
naming conventions: TB:tongue back, TD: tongue dorsum,
TM: tongue mid, TT: tongue tip. x and y denote horizontal
and vertical components.

esting property: Whereas for PARAFAC1, only one leverage profile can be cal-
culated for the matrix of articulator weights, PARAFAC2 offers the possibility
of calculating leverages for each speaker separately. Figure 6 and 7 show these
plots for the two data sets used in this study. The left panels show the leverages
for the articulator weigths of the respective PARAFAC1 solution, the right pan-
els show the leverages for the individual speakers as obtained by PARAFAC2.
The bold line in the right panels depict the average values of the single speaker’s
articulators for PARAFAC2.

The most evident patterns of figures 6 and 7 are (a) the general peak in
influence observed for tongue back and tongue dorsum in y-direction (b) the su-
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perficially close similarity between the average leverage profile of PARAFAC2
and the corresponding PARAFAC1 profile. This correspondence is almost per-
fect in the rate data set. Contrastingly, for the stress data set, a shift of the
most important sensor for tongue dorsum to tongue back can be observed for
PARAFAC2 in comparison to the PARAFAC1 profile.
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Figure 7. Stress corpus: Leverages for articulators. For
explanation of the x-axis see figure 6.

Taken together, the patterning of the different modes in the leverage anal-
yses is equivalent to the patterning in the loading analyses in previous sections
with respect to the factoring method. This raises the following question: If the
greater flexibility of PARAFAC2 to account for interindividual differences in
the articulatory configurations by a separate subspace for each speaker does not
relevantly influence speaker and vowel spaces, what is the origin of the increase
in fit observed for the stress data set? In order to answer this question, we calcu-
lated explained percentages of variance for each speaker separately across data
sets and factoring method. The result is shown in figure 8. The results a general
increase in explained variances for PARAFAC2 for both paralinguistic features
in both data sets. Conforming with the results on the explained variances for
the total samples, this increase in fit is less pronounced for the speech rate than
for the stress corpus.

4 Discussion

The results of these analyses can be summarized as follows: When compar-
ing two different PARAFAC-versions on two different corpora, findings with
respect to the explained variances are better for the PARAFAC2 algorithm for
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Figure 8. Percent explained per speaker for rate corpus
(a) and for stress corpus (b). dashed lines. dashed lines:
PARAFAC2, solid lines: PARAFAC1. left panel (a): circles
indicate normal rate, crosses fast rate. right panel (b) circles
indicate stressed, crosses unstressed position

both corpora. Note that the smaller impact of the choice of the modeling strate-
gies on vowel and especially speaker weights is not precluded by the algorithmic
decision made; rather it originates in the data analyzed. This is evidenced by
the relatively large impact of interindividual differences on the leverages in the
speaker modes in PARAFAC2 for both corpora.

We mentioned in section 2.1.3 that the data of the speech rate corpus were
recorded on two different occasions implying that the sensors had to be attached
twice. This does not appear to be problematic. The solution of the speech rate
corpus is more stable than the solution of the stress data set: A scenario in which
sensor placement differences between sessions would be recovered in individ-
ual articulator spaces would have been easily conceivable. However, this is not
the case, as the speech rate data set benefits less from PARAFAC2 in terms of
explained variances than does the word stress data set. Therefore, it seem to be
conclusive that the greater impact of PARAFAC2 on the solution in the word
stress data set can be traced to the coarticulatory influences of alveolar artic-
ulation present in these data. In this sense the word stress data set analysed
here confirms the findings of Hoole (1999), where analyses of single consonant
contexts ran into problems for the alveolar context. This is nicely illustrated by
leverages of vowel mode loadings where the most influential observations stem
from long back vowels. One need not go as far and claim that the canonical 2-
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factor PARAFAC solution is largely incompatible with vowel data acquired in
alveolar contexts, but often stabilizing orthogonality constraints have to be ap-
plied in order to end up with an interpretable model. In these cases, PARAFAC2
can capture speaker-specific variation more accurately than PARAFAC1.

This converges with the finding that the tongue back / tongue-dorsum
y-components are the most influential observations in the data sets. If the
vowel shapes are influenced by a surrounding /t/-gesture, the tongue-dorsum
and tongue-back becomes articulatorily more constrained during the vowel.
This leads to a decrease in the variance generated in the “backward-upward” di-
rection and an increase in variance in “front raising”-conform direction. In other
words, the “dominance” of the “front-raising” factor increases leading to a frag-
ile second factor or even degeneracies. We think that the Procrustes-like relaxed
version of the Parallel Proportional Profile as implemented in the PARAFAC2
algorithm allows for a speaker-specific definition of this backward-upward
movement and prevents degeneracy as shown in the stress data set. There
are other situations where this “backward-upward direction” of the tongue vari-
ance could be ill-defined across speakers and where PARAFAC2 could be a
remedy against methodological pitfalls: Using “fleshpoint methods” like the
magnetometer, the experimenter decides for particular landmark definitions
while gluing the sensors on the tongue. Acquiring data using different methods
like the three-dimensional reconstruction of MRI data as described in the paper
by Zheng et al. (2003), the input data are the outputs of surface reconstruction
algorithms, and the definition of landmarks is carried out at a later stage in the
analysis. Here, the analysis could benefit from the fact that PARAFAC2 fits the
data directly and not cross-products between column units. Therefore, it is eas-
ier to handle missing data, and in the case of three-dimensional data, the strong
concept of the landmark is to some extent relaxed. It would be possible to let
the dimension of the articulator mode differ from slab to slab, hence each slab
k could have its own specific articulator mode dimension and thus the solution
potentially depends less on a particular landmark definition.

Zheng et al. (2003) seem to have encountered morhological problems and
solved them by applying advanced preprocessing strategies consisting in an im-
plicit vocal tract length normalization (see section 1.2). We crosschecked the
preprocessing recommendations published in Zheng et al. (2003) against the
word stress corpus applying the vowel centering we were using in this study
and in Hoole (1999). This led to practically identical solutions compared to
the PARAFAC1 solution we reported in this study. For three-dimensional data
however, such a preprocessing approach might be of greater benefit than for
the analysis of EMA corpora, because static three-dimensional data might em-
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phasize the importance of vocal tract morphology. But at the same time, in
static MRI settings, the speaker weights might be more strongly biased by these
methodological problems. At the moment, we only can state, that for our EMA
analyses reported here, speaker weights were remarkably stable, although we
still cannot offer a conclusive interpretation on what they measure.
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